Глава 5
Хороший математик против великого математика
Развенчивать мифы невероятно весело. Просто посмотрите на беззаботные взрывы смеха и улыбки до ушей ведущих телешоу «Разрушители легенд»[34], и вы увидите: это карьера с высокой степенью удовлетворенности от работы.
Гораздо сложнее вносить поправки в мифы. Многие преобладающие в культуре взгляды на математику не то чтобы ошибочны – они просто искажены, неполны или гиперболизированы. Важны ли вычисления? Конечно же, но ими дело не ограничивается. Уделяет ли математика внимание деталям? Да, равно как вязание и паркур. Был ли Карл Гаусс прирожденным гением? Ну да, но красивые доказательства в основном находят не депрессивные немецкие перфекционисты[35], а обычные люди вроде нас с вами.
Перед тем как завершить этот раздел, я дам еще одно, последнее объяснение того, как думают математики, – шанс провести ревизию и прокомментировать некоторые популярные мифы. Как большинство мифов, они опираются на правду. И, как большинство мифов, они пренебрегают сомнениями и пробуксовкой на пути к осмыслению, которое делает нас людьми – и математиками.
Пару лет назад, когда я жил в Англии, у меня был ученик по имени Кори. Он напоминал мне нежноголосого 12-летнего Бенджамина Франклина: молчаливый, проницательный, длинные рыжие волосы, круглые очки. Я легко мог представить, как он изобретает бифокальные линзы.
Кори вкладывал душу в каждое домашнее задание, находил ясные связи между темами и собирал свои тетрадки с такой тщательностью и терпением, что я всегда опасался, как бы он не опоздал на следующий урок. Неудивительно, что на первой большой контрольной в ноябре Кори расщелкал все задачи.
Вернее, все задачи, на которые у него хватило времени.
Прозвенел звонок, но последняя четверть бланка ответов все еще была пуста. Он набрал чуть больше 70 баллов из 100 и явился ко мне на следующий день с нахмуренным лбом.
– Сэр, – сказал он (поскольку Англия – поразительная страна, где даже к нескладным 29-летним учителям обращаются с большим почтением), – почему время на решение контрольных ограничено?
Я полагаю, что честность – наилучшая политическая линия.
– Не потому, что скорость очень важна. Мы просто хотим удостовериться, что школьники могут справиться с контрольной сами, без посторонней помощи.
– Так почему нельзя работать после звонка?
– Ну, если бы я держал весь класс в заложниках весь день, другие учителя могли бы взбелениться. Они хотят, чтобы вы знали физику и географию, потому что ностальгически привязаны к реальности.
Я осознал, что никогда не видел Кори в таком состоянии: зубы сжаты, глаза потускнели. Всем своим видом он излучал разочарование.
– Я мог решить больше задачек, – сказал он. – У меня просто кончилось время.
– Я знаю, – кивнул я.
Больше нечего было сказать.
Намеренно или нет, школьная математика посылает громкий, четкий сигнал: «Скорость – это всё». Контрольные нужно решать быстро. Чем раньше сдашь контрольную, тем быстрее приступишь к домашней работе. Вы только посмотрите, как заканчиваются уроки – по звонку, как раунд извращенной принудительной викторины по логарифмам. Математика превращается в гонку, успех становится синонимом скорости.
Все это в высшей степени глупо.
Скорость имеет одно баснословное преимущество: она экономит время. Но математика требует глубокого проникновения в суть поставленной задачи, подлинного понимания, элегантного подхода. Вы не достигнете ничего из вышеперечисленного, перемещаясь со скоростью 1000 км/ч. Вы лучше разберетесь в математике, если будете думать тщательно, а не на скорую руку, и вы лучше изучите ботанику, рассматривая каждую травинку, а не скача как одержимый через пшеничное поле.
Кори понимал это. Я уповаю только на то, что учителя наподобие меня[36] не пытались, вопреки нашим лучшим намерениям, переубедить его.
Моя жена, математик-исследователь, однажды указала мне на курьезный паттерн математической жизни.
● Шаг 1. В воздухе повис сложный и захватывающий вопрос, важная гипотеза нуждается в доказательстве. Многие пытаются приручить зверя, но безуспешно.
● Шаг 2. В конце концов кто-нибудь находит длинное и запутанное доказательство, оно чрезвычайно глубокое, но за мыслью сложно уследить.
● Шаг 3. Со временем публикуются новые доказательства, они становятся все короче и проще, пока в конце концов самое первое доказательство не приобретает статус артефакта: неэффективная лампочка Эдисона выходит из употребления, уступая место более современным и изящным инженерным решениям.
Почему эта траектория настолько распространена?
Сноски
1
Термин теории игр. Выигрыш одного игрока равен проигрышу другого. Простейший пример – игра в орлянку. Строго говоря, уроки математики не являются такой игрой: все ученики могут одновременно получить высший балл и «выиграть» (или наоборот), хотя, конечно, это крайне маловероятно. – Прим. пер.
2
Происхождение этой игры теряется в тумане. Возможно, впервые ее правила были изложены в журнале Games в конце 1990-х или начале 2000-х (хотя на мой запрос сотрудники редакции ответили, что никогда не слышали об этой игре). В 2009-м версия под названием «Тик-так-ку» (с фишками на деревянной доске) завоевала премию Менсы за лучшую американскую настольную игру. Возможно, эту игру независимо придумывали несколько раз, как некоторые танцы или дифференциальное исчисление.
3
Когда я впервые продемонстрировал эту игру моим ученикам в Оклендской чартерной средней школе (Oakland Charter High School) в 2012 году, они-то и окрестили ее «жесткие крестики-нолики» (Ultimate Tic-Tac-Toe). Мой пост в блоге с таким заголовком вызвал всплеск популярности: статью в «Википедии», несколько научных статей и множество мобильных приложений. Мораль: гордитесь, матадоры! Вы придумали название для этой штуковины.
4
Я благодарен Марку Торнтону, который прочел черновик этой главы и задал в точности тот же самый вопрос. Правки Майка сродни текстам песен Леонарда Коэна или прозе Хемингуэя: я всегда знал, что они хороши, но чем старше я становлюсь, тем больше ценю их.
5
Ключевая идея заключается в том, что у продолговатых прямоугольников непропорционально большой периметр, а у похожих на квадраты – непропорционально большая площадь. Поэтому нужно просто взять продолговатый прямоугольник (например, 10×1) и почти квадратный (например, 3×4).
6
Если в ответе должны быть целые числа, задача становится еще веселее. Вот мой вывод формулы, порождающей целое семейство решений:
Решений бесконечно много, но некоторые все равно остаются вне поля зрения, потому что другие значения d тоже могут давать целочисленные значения c. Например, эта формула не дает моего любимого решения: 1 × 33 и 11 × 6. Мой коллега Тим Кросс, съевший собаку на диофантовых уравнениях, подсказал мне ловкий способ найти все целочисленные решения. Моей профессии свойственна мизантропия, поэтому на сей раз я предлагаю читателю найти этот способ самостоятельно.
7
Эта стратегия слишком сложна, чтобы полностью изложить ее здесь, но она реализована коллегами из Академии Хана: https://www.khanacademy.org/computer-programming/tic-tac-toe/5946909186326528.
8
Эндрю Уайлс (род. 1953), профессор Принстонского университета. – Прим. пер.
9
Я рекомендую прочесть эту историю целиком: Simon Singh, Fermat’s Last Theorem (London: Fourth Estate Limited, 1997). [Сингх C. Великая теорема Ферма. – М.: МЦНМО, 2000.]
10
Любой многочлен n-й степени над полем комплексных чисел имеет в нем ровно n корней (с учетом кратности). – Прим. науч. ред.