Сергеев Никита - Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев… стр 8.

Шрифт
Фон

· Доволен – 50%

· Насколько доволен, настолько недоволен – 15%

· Недоволен – 35%

В данном случае, доверительный интервал (или ошибка выборки) будет ±1,02% будет справедлива только для «довольных» – т.е. доля довольных будет в диапазоне 50±1,02% (от 48,98 до 51,02).

Но для средней альтернативы доверительный интервал (или ошибка выборки) будет ±0,73%.

А для «недовольных» ±0,97%.

Т.е, подставляя в поле «Процент ответов» разные значения альтернатив в зависимости от % отметивших их сотрудников, мы будем получать разные значения доверительного интервала для альтернатив.

На практике, если в целом ошибка выборки (значения доверительно интервала) Вас устраивает в целом для «Процент ответов» 50, то далее просто смотрят полученные % ответов.

Переменные

Данные обычно состоят из большого количества отдельных показателей, которые называют переменными. Это, например, доход, количество клиентов, город или страна, отдел, род войск, зарплата, пол, частота курения, количество посещений или часов порносайтов, частота занятия сексом в неделю, количество детей, социальный статус и т. д.

Переменная имеет свое значение для того или иного объекта /случая / наблюдения.

По большому счету переменная – это характеристика объекта / случая / наблюдения. Например, цвет глаз у каждого человека будет свой.

Т.о., каждый случай, объект или наблюдение имеют свои характеристики, т.е., имеет свое значение той или иной переменной. Переменные описывают объект.

Например, на рис. 11 в качестве примера приведены Валя и Иван – это объекты / случаи / наблюдения.


Рис. 11. Объекты и переменные


А их рост, цвет глаз, доход, место проживания, частота путешествий и другие характеристики – это переменные.

Например,

· Валя -женщина, Иван – мужчина.

· Рост Вали = 1,7 метра, а Ивана 1,82.

· У Вали глаза голубые, у Ивана зеленые.

· Валя живет в Омске, Иван в Москве.

· Месячный доход Вали – 80.000 руб, а Ивана – 200.000 руб.

· Валя ездит на отдых за границу редко – раз в несколько лет, Иван часто – несколько раз в год.

Шкалы для измерения переменных

Каждая переменная может принимать различные значения. Значения переменных варьируются и отличаются от случая к случаю, от объекта к объекту.

Ну и Вы уже наверняка заметили, что они могут быть измерены в различных шкалах.

Например, пол – 0 и 1 или 1 и 0. Т.е, мужчина или женщина.

Доход, который выражается в рублях и может принимать большое количество разных значений, хоть до копеек.

Или частота поездок за границу, курения, использования интернета…

Разные шкалы имеют разную информативность. От того, какая шкала используется, зависят также и методы анализа, которые к ней можно применять.

Статисты придумали разные типы шкал (см. рис.) но их в целом можно объединить в три основных типа, которые в книге приводятся в порядке возрастания информативности:


Рис. Типы шкал – и их 3 основные вида


Номинальная шкала (рис. 12) – например, пол, город, страна, семейное положение, политическая партия, ФИО кандидата в президенты.


Рис. 12. Номинальная шкала


По сути, это шкала наименований и классификаций. С ней бессмысленно проводить какие-либо математические операции. Цифры в ней ничего не значат (не имеют эмпирического значения). Если, например, мы поставим 1 Уфе, а 2 – Самаре, это не означает, что Уфа на ступеньку ниже Самары. Мы можем даже поменять цифры между городами – это ничего не изменит.

Т.е., эта шкала всего лишь определяет принадлежность наблюдения, случая или объекта к какой-то группе и позволяет классифицировать объекты. Тут мы можем посчитать только количество объектов в группе (количество или % мужчин и женщин в нашей выборке; количество людей из разных стран или профессий).

Отдельно при рассмотрении номинальных шкал стоит выделить дихотомии – переменные с двумя значениями. Пол, прошёл / не прошёл тест, выжил / погиб, любой вопрос с вариантами ответа только да / нет. Есть методы анализа, при которых удобно использовать именно дихотомии.

Второй тип шкал – порядковая или ранговая (рис. 13).


Рис.13. Порядковая (ранговая) шкала


Еще ее называют ординальная (от order – c англ. порядок). Например, воинское звание, место в организационной иерархии или уровень образования. Тут закладывается степень проявления какого-то свойства между объектами, но непонятна ни его точность, ни расстояния между ними.

Генерал выше полковника. Работа может быть интересна, безразлична или неинтересна. Занявший I место по бегу выше II и III (хотя разница в их абсолютном результате могла составить между ними всего 5 секунд).

Эту шкалу, как и номинальную, используют для классификации объектов и подсчета количества или %. Но по ней можно применять уже и не только частотный анализ – к примеру, можно попробовать найти связь между частотой использования мата и воинским званием.

Третий тип – количественные\интервальные шкалы (рис. 14).


Рис. 14. Интервальная (количественная, относительная, метрическая) шкала


Если предыдущая порядковая шкала несла инфо о порядке данных, то количественная – это числа, реально отражающие размерности, разности, масштабы и расстояния между объектами.

Например, точное время, за которое бегуны пробежали дистанцию. Возраст лет. IQ. Уровень лояльности или мотивации сотрудника. Доход.

С этими шкалами можно осуществлять любые виды анализа. Более того, их можно легко превращать в порядковые, объединяя диапазоны значений. Например, доход можно разбить на 4 диапазона – низкий, средний, выше среднего и высокий.

Оговорюсь, что количественные (метрические) шкалы могут выглядеть по-разному: есть с отрицательными значениями, есть с абсолютным нулем (например, возраст) есть те, которые в принципе не начинаются с нуля (например, IQ). Аналитики в разговорах, статьях, литературе их могут именовать по-разному (например, интервальная, шкала масштаба или шкала отношений с абсолютным нулем…) – но, по сути, все они с точки зрения использования методов аналитического инструментария одинаковы.

Гипотезы

Когда говорят слово гипотеза, у многих возникает ассоциация с учеными или теориями. На самом деле гипотезами оперируют и менеджеры, бизнесмены, сотрудники компаний, криминалисты и т. д.

Например, создавая рекламную кампанию, менеджер по рекламе выдвигает гипотезу, почему и как реклама должна сработать – и на их базе строит свою кампанию. Бизнесмен, принимая решение вкладываться в дело или нет, выдвигает и размышляет над целым набором гипотез-предположений. Криминалист, расследуя перестрелку, выдвигает гипотезы, которые проверяются в ходе расследования и изучения фактов.

Например, я при проведении исследований персонала проверяю гипотезу, что определенный набор организационных факторов (зарплата, карьера, обучение и развитие, морально-психологический климат и т.д.) влияет на лояльность и мотивацию персонала.

Или прогнозируя будет кандидат успешным продавцом или нет в конкретной компании, в качестве гипотезы могу заложить предположение, что успешность определяют результаты по нескольким тестам, пол и уровень образования.

Гипотезы очень важны. Хорошо о них было сказано на 32 минуте последней сериии фильма «Михайло Ломоносов» (Мосфильм, 1986): «Запомните, в основе науки лежит ежечасная работа по спирали опыта. Но не бойтесь и гипотез! Они в естественных и философских трудах подчас единственный путь, которым величайшие умы постигли самых важных истин. Гипотезы! Полет! Порыв души!…»

Гипотезы могут или быть верными, или отклоняться.

И в современных подходах отклонить или принять гипотезу помогает расчет вероятности, являются наблюдаемые закономерности случайными, или можно считать их реальными. Особенно это важно для социально-экономической реальности, где не работают жестко предопределенные законы.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3