4.5.7. Инструктаж
4.5.8. Техническое обслуживание
4.5.9. Улучшение производительности системы
4.5.10. Вопросы утилизации изделий
4.5.11. Управление операциями.
Сравнение требований к качеству инженерного образования, выдвигаемых FEANJ и CDIO, показывает их совпадение по большинству характеристик, однако главное требование Международной инициативы CDIO выражается в системно-комплексном результате: подготовка инженера, способного к осуществлению профессиональной деятельности в контексте жизненного цикла реальных систем, процессов и продуктов «Conceive – design – implement – operate».
Общественно-профессиональное признание в мире при реализации инициативы CDIO достигается посредством сущностной модернизации образовательного процесса, ориентированной в первую очередь на:
• новую философию образования, задающую общий контекст процесса формирования инженера (стандарт 1);
• разработку учебных планов с четким выделением результатов образования в виде личностных, межличностных и профессиональных инженерных компетенций в создании продуктов и систем, соответствующих установленным целям программы и одобренных участниками программы (стандарт 2);
• включение в учебный план взаимодополняющих дисциплин, позволяющих интегрировать формирование личностных, межличностных компетенций и компетенций создавать продукты и системы;
• наличие дисциплины «Введение в инжиниринг», закладывающей основы инженерной практики в области создания продуктов и систем и формирующей личностные и межличностные компетенции (стандарт 4).
Ориентация учебного процесса на преимущественное использование проектной деятельности потребовала разработки заданий по проектированию и созданию изделий (стандарт 5) и организации рабочего пространства для этой деятельности (стандарт 6). Новые цели инженерного образования, обозначенные инициативой CDIO, предполагают использование активных технологий обучения (стандарт 8) и интегрированных учебных заданий, в ходе которых студенты применяют теоретические знания в реальной инженерной практике (стандарт 7). Повышение квалификации профессорско-преподавательского состава, реализующего инициативу CDIO, является необходимым условием ее успешности (стандарты 9, 10). Аудит и оценка программы, в том числе и успеваемости студентов (стандарты 11, 12), позволяют осуществлять мониторинг образовательного процесса и регулировать и корректировать его ход в случае необходимости.
Обозначая международные требования к качеству инженерного образования, естественно оценить соответствие ФГОС ВО этим требованиям. Определенные во ФГОС ВО общекультурные, общепрофессиональные и профессиональные компетенции «покрывают» требования международной инициативы CDIO и FEANJ.
Резюмируя сказанное, отметим, что инновационное инженерное образование базируется на практико-ориентированном подходе, дуальном проектно-ориентированном образовании, идеях непрерывности, компетентностном подходе, государственно-частном партнерстве в сетевых формах его реализации в интеграции образовательной, научной и производственно-практической деятельности студентов на предприятиях при усилении активности студентов, приоритетном использовании соответствующих педагогических технологий.
Построение многоуровневого инженерного образования основано на системно-комплексном подходе, реализующемся при выполнении принципов:
• целостности, заключающейся в направленности всех элементов образовательной системы на достижение результатов в виде сформированных компетентностей, повышения их уровня за счет специально организуемых условий;
• гуманистической направленности, определяющей субъект-субъектное взаимодействие участников образовательного процесса, учет их индивидуальных особенностей, направленность на развитие личности;
• практико-ориентированности, обеспечивающей целенаправленное формирование компетентности студента для продуктивной профессиональной деятельности;
• опережения (перспективности), определяющего ориентацию системы образования на учет устойчивых тенденций в развитии общества и проектирование на этой основе умственного и личностного развития, способности к прогнозированию результатов деятельности, возможных рисков и путей их успешного преодоления;
• открытости, обеспечивающей возможность системы образования не только получать информацию о своем функционировании из внешней среды, но и дающей возможность быть готовым к изменениям и дальнейшему развитию;
• непрерывности, обеспечивающей доступность образования и достижение субъектом образовательного процесса практико-ориентированных результатов обучения за счет преемственности на содержательном и технологическом уровнях на разных этапах образования;
• региональности, определяющей направленность образовательных услуг на обеспечение осознанного заказа на подготовку кадров со стороны корпораций региона, подготовку конкретного студента под заказ конкретного предприятия с учетом его специфики;
• интернационализации, обеспечивающей разработку принципов проектирования модели многоуровневого инженерного образования в соответствии с международным опытом и уровнем развития педагогической теории и инженерной образовательной практики;
• государственно-частного партнерства, определяющего повышение качества профессионального образования за счет взаимодействия университета и базовых предприятий на всех этапах организации и реализации образовательного процесса (целеполагания, проектирования, реализации).
2.2. Анализ опыта реализации инновационного инженерного образования
Обсудив общую идею инновационного формата инженерного образования, приведем пример его продуктивной реализации в магистерской и бакалаврской подготовке будущих инженеров. Нарушая естественную последовательность в уровнях инженерного образования «бакалавриат – магистратура», считаем целесообразным обсудить практику инженерного образования нового формата, начиная с магистратуры. Причина такой последовательности заключается в том, что новый формат магистерской подготовки начал функционировать с 2012 года. К настоящему времени есть возможность проанализировать этот опыт, выявить проблемы и наметить пути их решения, в то время как подготовка бакалавров по инновационной программе началась с 2014 года.
Проект под названием «Специальное инженерное образование» на магистерском уровне реализуется в университете с 2012 года.
В проекте участвуют программы разных направлений инженерной подготовки: «Конструкторско-технологическое обеспечение машиностроения»; «Системное проектирование космических летательных аппаратов»; «Обработка металлов».
Одним из критериев выбора программ-участников проекта было наличие партнерских отношений с работодателем. Партнерами по проекту стали ОАО «Информационные спутниковые системы имени академика М.Ф. Решетнева», Научно-производственное предприятие «Радиосвязь», ОАО «Красноярский завод цветных металлов имени В.Н. Гулидова».
Целью проекта стала разработка и апробация новой модели подготовки инженерных кадров, адекватной вызовам современности. Заявленная миссия проекта весьма амбициозна – подготовка выпускников, готовых создавать лучший мир [2].