Горбачев Александр Михайлович - Модели информации и данных. Атом и универсум информации стр 4.

Шрифт
Фон

Именно универсальность в интеллектуальных системах является наиболее ценным свойством, она означает наибольшую гибкость системы, её способность, с одной стороны, улавливать, воспринимать, распознавать, усваивать внешние данные и, с другой стороны, формировать ответы, реакции, генерировать информацию и действия, которые вписываются в общепринятую структуру знаний. Общепринятая структура знаний – это система понятий, терминов, методов и теорий, принятых в обществе.

Как видно из определения, основными свойствами системы являются коммуникативные способности в социуме. Другими словами, рассматривается не какая-то расчетная функция, не интеллектуальный механизм, а способность коммуницировать в общей среде. В то же время, отдельный элемент системы, обладающий только коммуникативными свойствами, является вырожденным, поскольку не несет в себе никакой ценности, связанной с выборкой, хранением, структурированием и анализом информации. Однако «разум в себе», не имеющий достаточных коммуникативных качеств, также является вырожденной системой. Но и так же можно сказать, что невозможно поддерживать приемлемый уровень коммуникации без обработки информации. В частности, система не сможет ответить на вопросы к ней, если у неё не будет хранилища информации, системы выборок информации и т. п.

В качестве примера, газеты с объявлениями или доски объявлений можно рассматривать не более чем как обособленные коммуникативные системы. Однако и газеты рекламных объявлений, и другие способы коммуникации структурируют и формализуют информацию – через формат газеты, рубрики и разделы, формат объявлений.

Для рассмотрения «общества» интеллектуальных систем наилучшим образом подходит теория многоагентных систем (МАС, multi-agent system). Это система, которая образована несколькими взаимодействующими интеллектуальными агентами. Интеллектуальный агент – это некоторая сущность, наблюдающая за окружающей средой или действующая в ней. Такой агент может быть роботом, программной системой, человеком и пр. Коммуникативная часть является определяющей, однако раз мы исследуем компьютерные системы, большее внимание мы будем обращать на агентов как на программные системы.

Агенты разделяются на агентов с простым поведением, агенты с модельным поведением, целенаправленные агенты, практичные агенты, обучающиеся агенты и т. д.

В теории мультиагентных систем отдельно выделяются субагенты. Субагент – это часть агента, которая может быть выделена в специализированную подсистему. Так, существуют:

– временные субагенты для принятия оперативных решений,

– пространственные агенты для взаимодействия с реальным миром,

– обучающие агенты и т. д.

Субагенты могут быть различного назначения, и в большей степени они разделяются исходя из процессов и архитектуры самого агента.

Агенты в многоагентной системе должны иметь несколько важных характеристик:

– автономность,

– ограниченность представления. То есть, ни у одного агента нет представления обо всей системе,

– децентрализованность, то есть, в системе нет агентов, управляющей всей системой.

В многоагентной среде отдельные агенты имеют возможность получать и формировать информационные поля в виде сообщений между собой. Не обязательно, что все агенты являются равными по ролям, по правам, по возможностям, по зависимостям друг от друга, по доступности или открытости взаимодействия с другими агентами. Например, в многоагентной среде наравне с интеллектуальными агентами могут существовать агенты для обмена данными, такие как поисковые сервера, публичные хранилища для обмена данными и для получения данных.

Агенты как черный ящик

В многоагентной среде на первый план выходит взаимодействие между агентами. И на второй план отходит реализация этих агентов. Главное, чтобы агенты поддерживали общепринятый протокол обмена информацией, а как устроены эти агенты внутри и из чего они состоят, по большому счету, не имеет значения.

Таким образом, агенты предстают перед нами в виде черного ящика. Мы знаем, что они общаются с нами, но не знаем, кто они такие, какие механизмы обработки данных лежат в их основе, какую информацию они хранят в себе.

Большое количество современных программ и отдельных обработок в программах представляется нам аналогичным образом. Они являются закрытыми: на их входе существует некоторое количество исходных данных, на выходе – некоторый результат. С развитием интерактивных программ, некоторые обработки в рамках программных систем становятся еще менее прозрачными для пользователя, поскольку ему не всегда понятно, какие данные системы являются исходными для обработки, куда сохраняется результат и почему получился именно такой результат. Например, при расчете остатка дней отпуска сотрудника в системе управления персоналом система может брать (или не брать) в расчет дату приема сотрудника, признак ненормированного рабочего дня, отпуска, взятые за свой счёт более 7 дней, отпуска по уходу за ребенком. Количество параметров столь велико, что нельзя быть уверенным, что процедура расчета полностью возьмет все из них, и корректно рассчитает количество дней права на отпуск. Результатом работы такой процедуры является остаток дней. Но система может их хранить в нескольких таблицах (например, по рабочим годам сотрудника и общее количество дней в целом). И нет никакой гарантии, что процедура расчета верно запишет результаты во все таблицы, и что данные в этих таблицах будут непротиворечивы. Поскольку данные хранятся во внутренних таблицах системы, проверить их простому пользователю практически невозможно (лишь используя специальные отчеты) так же, как и невозможно проверить правильность работы процедуры – от параметров до логики.

Тем не менее, принцип «черного ящика» хорош, если мы хотим абстрагироваться от существа обработок, и сосредоточиться на вопросах коммуникации между системами, либо на вопросах предоставления и получения некоторой информации. Этот принцип может быть полезен при отделении части процессов на уровень субагентов. При проектировании систем содержимое «черного ящика» обычно заменяется элементарным (простейшим) процессом или заглушкой.

Тест Тьюринга

Поскольку агенты определяются именно своими коммуникационными способностями, в этом контексте невозможно не упомянуть тест Тьюринга. Кроме того, в этой главе я хочу определиться со своим отношением к общему понятию искусственного интеллекта.

Основную идею общего понятия «искусственный интеллект» в 1950 году сформировал Алан Тьюринг, автоматически став его основоположником. В журнале Mind Тьюринг описал тест на интеллект. Тест основан на взаимодействии человека (следователя) и компьютера. Общение происходит в изолированных комнатах посредством компьютерного терминала. Следователь задает вопросы и получает ответы от своего собеседника. Следователь не знает, общается он с человеком или с компьютером. Смысл теста Тьюринга заключается в том, чтобы признать, что компьютер обладает интеллектом, если следователь не смог раскрыть компьютер в качестве собеседника.

Конечно, по прошествии почти 60 лет будет неправильно говорить о корректности замещения определения «разумности» определенным тестом. До сих пор ни одна машина не в состоянии пройти тест Тьюринга. Но нужно ли проходить этот тест?

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3