Марков Александр Владимирович - Эволюция. Классические идеи в свете новых открытий стр 8.

Шрифт
Фон

Некогда у всех мюмзиков был только один вариант (аллель) гена А. Обозначим его А

1

2

2

2

1

1

Нам нужно ответить на вопрос: как будет меняться со временем частота аллеля A

2

Раз мутация была нейтральной, значит, плодовитость обладателей обоих аллелей одинакова. Допустим, они все рожают ровно по десять детенышей. Разумеется, потомство наследует родительский аллель гена А.

Может показаться, что раз аллели имеют одинаковую приспособленность, то их так и останется поровну. Это неверный ответ. На рисунке(см. ниже) показан результат четырех запусков нашей модели. Мы видим, что частота А

2

случайными блужданиями

2

зафиксировался

2

элиминировался

Так бывает всегда. Если аллель нейтрален, его частота будет «случайно блуждать» между нулем и единицей до тех пор, пока не упрется либо в верхний, либо в нижний предел. Рано или поздно нейтральный аллель либо зафиксируется (достигнет частоты 1), либо элиминируется – исчезнет из генофонда. Третьего не дано. Таким образом, блуждания хоть и случайны, их исход предсказуем. Мы точно знаем, что дело кончится либо фиксацией, либо элиминацией. Чем больше популяция, тем в среднем дольше придется ждать исхода[17], но он все равно неизбежен.



Здесь самое время сказать, что случайные, не зависящие от приспособленности изменения частот аллелей называются генетическим дрейфом. Под властью дрейфа находятся все нейтральные мутации (а в маленьких популяциях отчасти также и вредные с полезными, но об этом позже).

Можно ли вычислить вероятность того, что нейтральный аллель в конце концов зафиксируется, а не элиминируется? Да, это просто. В нашем примере аллели А

1

2

1

2

Ну а если конкурирующих нейтральных аллелей не два, а, скажем, четыре и начальные частоты у них тоже одинаковые (0,25)? В этом случае дело кончится фиксацией одного из аллелей и элиминацией трех остальных, причем для каждого аллеля вероятность фиксации равна 0,25. Таким образом, очевидно, что вероятность фиксации нейтральной мутации в будущем просто-напросто равна ее частоте в данный момент: P

fix

Если вы, дорогие читатели, еще не устали от этой примитивной математики, то позвольте познакомить вас еще с двумя простыми, интересными и полезными формулами.

Сколько нейтральных мутаций будет фиксироваться в популяции в каждом поколении? (Имеются в виду мутации уже не в одном и том же, а в разных генах.) Если мы сумеем это вычислить, то получим прекраснейший инструмент – молекулярные часы. Тогда мы сможем по количеству нейтральных генетических различий определить, когда жил последний общий предок сравниваемых организмов.

Вывод этой формулы – подлинный шедевр «биологической математики». Судите сами. Определим сначала, сколько новых мутаций появляется в популяции в каждом поколении. Будем считать для простоты, что подавляющее большинство мутаций нейтральны (это недалеко от истины). Ответ очевиден: U × N, где U – темп мутагенеза (среднее число новых мутаций у каждой новорожденной особи), N – численность популяции. Определить U можно, просто сравнивая геномы детей и родителей.

Теперь нужно понять, какая часть из этих U × N только что появившихся мутаций в итоге зафиксируется. Это и будет искомая величина – темп фиксации нейтральных мутаций в генофонде популяции за одно поколение. Обозначим ее буквой V.

Мы уже знаем, что вероятность фиксации мутации равна ее частоте: P

fix

Нам остался один шаг до молекулярных часов. После того как два вида, произошедшие от общего предка, разделились, в их генофондах независимо накапливаются нейтральные мутации. За время t (измеряемое в поколениях) первый вид накопит V × t = U × t нейтральных мутаций, и второй вид накопит столько же. Совместными усилиями они накопят 2U × t нейтральных отличий друг от друга. Зная темп мутагенеза U и подсчитав число различий между геномами сравниваемых видов (обозначим его буквой D), определяем время жизни их последнего общего предка: t = D/2U. Это и есть знаменитые молекулярные часы.

Если бы темп мутагенеза и скорость смены поколений были одинаковыми у всех живых существ, все было бы совсем просто. Но они, конечно, неодинаковы, поэтому в вычисления приходится вносить поправки. А еще есть проблема насыщения: в какой-то момент – обычно по прошествии десятков, а чаще сотен миллионов лет – гены разделившихся когда-то видов оказываются настолько «переполнены» нейтральными различиями, что величина D перестает расти, хотя нейтральные мутации продолжают фиксироваться. Ниже мы увидим пример исследования, показавшего, как уровень сходства между «случайно блуждающими» последовательностями приблизился к минимально возможному и дальше снижаться уже не мог.

К счастью, разные участки генома накапливают нейтральные изменения с очень разной скоростью[18]. Быстро меняющиеся участки ДНК используются для датировки недавних событий, а те, что меняются медленно, хороши для датировки событий глубокой древности.

Дрейф и отбор: кто кого?

Генетический дрейф царствует над нейтральными мутациями (аллелями), отбор – над полезными и вредными. Отбор, повышающий частоту полезных мутаций, называют положительным. Отбор, отбраковывающий вредные мутации, – отрицательным, или очищающим.

Впрочем, все так хорошо и просто только в больших популяциях. В маленьких ситуация сложнее, потому что отбор и дрейф – две главные движущие силы эволюции – начинают конкурировать друг с другом за контроль над слабовредными и слабополезными мутациями.

Посмотрим, как это происходит. Воспользуемся для этого той же моделью с мюмзиками. Изменим только характер мутации, которая привела к появлению аллеля А

2

1

2

1

2

2

На рисунке (см. ниже) показано, как будет меняться частота А

2

2

Перед нами, между прочим, важнейший эволюционный процесс – аллельное замещение, т. е. вытеснение более приспособленным аллелем менее приспособленного. Процесс идет не слишком быстро. В большой популяции, например состоящей из миллиона особей, для того чтобы зафиксировалась новая полезная мутация, дающая 5-процентное адаптивное преимущество, требуется около 560 поколений. А ведь 5 % – это серьезное преимущество. Такие мутации – редкость. Ждать, пока зафиксируется мутация с преимуществом в 1 %, придется уже 2800 поколений! Тем не менее в большой популяции отбор «чувствует» даже самую незначительную разницу в приспособленности. Это обеспечивает эффективную (пусть и медленную) фиксацию слабополезных мутаций и элиминацию слабовредных[20].



На среднем графике мы видим, какая судьба ждет такую же полезную мутацию, повышающую приспособленность на 5 %, в популяции меньшего размера (N = 200). Частота полезного аллеля и в этом случае росла и в конце концов достигла 1 (мутация зафиксировалась), но путь был труден и извилист. Пожалуй, нашей мутации могло и не повезти, ее шансы на фиксацию не были стопроцентными.

Наконец, на правом графике мы видим, что происходит с точно таким же полезным аллелем в совсем крошечной популяции (N = 30). На рисунке показаны результаты двух запусков модели. В одном случае мутация зафиксировалась, в другом – элиминировалась. Не правда ли, картинка похожа на результат работы дрейфа, а не отбора?

Так оно и есть. В этом заключается главный урок, который мы можем извлечь из наших экспериментов. Чем меньше популяция, тем слабее в ней власть отбора и тем могущественнее дрейф. В маленьких популяциях слабополезные и слабовредные мутации начинают вести себя фактически как нейтральные. Их частоты «случайно блуждают», пока не наткнутся на верхний или нижний порог. В маленьких популяциях, где царствует дрейф, небольшие различия в приспособленности становятся невидимыми для отбора. Поэтому слабовредная мутация запросто может зафиксироваться, а слабополезная – элиминироваться.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3

Популярные книги автора