Алексеев Г. В. - Метеорологические и геофизические исследования стр 5.

Шрифт
Фон

Рис. 9. Площадь, занятая морским льдом в Арктике в сентябре по данным NSIDC (1), и средняя температура воздуха в июне – сентябре в морской Арктике на 41 станции (2). Шкала температуры повернута на 180°


Результаты расчетов будущего арктических морских льдов на глобальных моделях климата представлены во многих публикациях, включая четвертый оценочный доклад МГЭИК (IPCC, 2007). Характерной чертой ансамбля проекций по разным моделям является значительный разброс, возрастающий к концу 21-го века. На рис. 10 а приведены среднее по ансамблю из 16 моделей и крайние члены ансамбля, соответствующие наиболее быстрому (1) и наиболее медленному (2) сокращению ПМЛ в сентябре. Видно, что наблюдаемое сокращение площади льда значительно опережает модельные реализации.


Рис. 10. Средняя ПМЛ по ансамблю из 16 модельных проекций из CMIP3 в сентябре (1) и крайние проекции (2,3). 4 – ПМЛ по данным NSIDC


Основная причина расхождений в оценке изменений площади льда между моделями и наблюдениями в том, что модели значительно занижают летнюю температуру воздуха (рис. 11) вследствие, по-видимому, недостаточной чувствительности к изменениям радиационного воздействия и с занижением собственной изменчивости климатической системы в Арктике.


Рис. 11. Средняя летняя ПТВ по данным 32 станций и по расчетам на 16 моделях из ансамбля CMIP3 в области к северу от 60° с.ш.


Другой важный параметр морского ледяного покрова – его толщина – также уменьшилась значительно (почти вдвое по оценке в работе (Kwok and Rothrock, 2009)) за период с 1980 по 2008 год. Измерения с борта атомных ледоколов, выполненные сотрудниками ААНИИ в 1977–2009 гг., (Фролов и др., 2009) также показали значительные изменения толщины льдов по маршрутам их плавания. Причем изменения произошли после 1987 года за счет сокращения количества многолетних льдов (таблица 6).


Таблица 6. Количество и средняя толщина льдов различного возраста на пути плавания а/л «Арктика» в августе 1977 г. и НЭС «Академик Федоров» в августе 2005 г (Фролов и др., 2009)

Роль морского льда в годовом цикле двуокиси углерода в атмосфере морской Арктики

Исследования в Арктике выявили ряд особенностей в распределении концентрации СО

2

Semiletov et al., 2004; Голубев и др. 2006

2

2

Алексеев, Нагурный, 2005; 2007;. Алексеев и др., 2007а

2

2

2

2

Semiletov et al., 2004; Rysgaard et al., 2007


Рис. 12. Размах годового колебания среднемесячной концентрации СО

2


Исследования, выполненные на дрейфующей станции СП-35 в 2007/08 годах позволили обнаружить и измерить эмиссию СО

2

10

Недашковский, Макштас, 2010

2

2

Алексеев, Нагурный, 2005; 2007;. Алексеев и др., 2007а

2

Арктический бассейн

Для формирования климата морской Арктики важным процессом является поступление теплой и соленой воды из Северной Атлантики. Приток атлантической воды (АВ) в Арктику составляет часть глобального океанического конвейера, связывающего океаны транспортом тепла, соли и пресной воды. Поступая из Северной Атлантики, АВ распространяются по акватории Норвежского, Гренландского и Баренцева морей и проникают в Арктический бассейн, где занимают промежуточный слой на глубинах от 100 до 800 метров (Тимофеев, 1960; Трешников, Баранов, 1972). Атлантическая вода является важным источником тепла в приатлантическом секторе Арктики и источником соли для арктических вод, подвергающихся постоянному опреснению. Постоянный приток тепла от слоя АВ в верхний слой Арктического бассейна ограничивает зимнее нарастание льда, хотя о величине и распределении этого притока нет единого мнения. Все это указывает на то, что поступление АВ является важным климатообразующим процессом в арктической климатической системе и его мониторинг должен быть составной частью слежения за изменениями климата (Alekseev et al., 2003; Polyakov et al., 2003; 2004; Алексеев и др. 2007б).

Поток атлантической воды на протяжении от пролива Фрама до моря Лаптевых включительно сконцентрирован в сравнительно узкой зоне вдоль материкового склона и доступен для мониторинга с помощью современных судов ледокольного типа и небольшого числа длительных заякоренных подводных (и подледных) измерителей течений, температуры и солености воды. Обобщение океанографических данных, собранных в Арктическом бассейне с начала наблюдений, позволило выбрать районы, наиболее освещенные наблюдениями и сформировать климатические ряды характеристик АВ по 2009 год включительно. Одной из таких характеристик является максимальная температура в слое АВ в шести районах Арктического бассейна (рис. 13).


Рис. 13. Изменения максимальной температуры в слое АВ по данным измерений в шести районах Арктического бассейна (на карте слева) по данным 1920–2009 гг.


Приведенные на рис. 13 изменения максимальной температуры АВ показывают начало современного повышения температуры АВ в проливе Фрама в 1987 году, которое разделяется на два этапа. Второй этап повышения температуры начался в 1997 году. Его начало прослеживается и в других рассматриваемых районах с запаздыванием до 8 лет в районе Северного Полюса. В последние годы повышенные значения температуры АВ сохраняются, однако наметилась тенденция к их уменьшению.

Обобщение характеристик слоя АВ по пяти районам в Арктическом бассейне (без пролива Фрама) путем нормирования (на СКО) их аномалий (относительно соответствующих средних за период наблюдений) позволило выявить крупномасштабные изменения максимальной температуры в слое АВ, глубины максимальной температуры и положения верхней границы слоя (рис. 14).


Рис. 14. Нормированные аномалии характеристик слоя АВ, обобщенные по 5 районам Арктического бассейна (без пролива Фрама). Слева направо: максимальная температура воды, глубина максимума температуры, глубина верхней границы слоя (нулевой изотермы)


Несмотря на значительный разброс нормированных аномалий, аппроксимация ортогональными полиномами выделяет междесятилетние колебания характеристик с соответствующими экстремумами. Максимумы температуры АВ приходятся на 1930-е, 1950-е и 1990–2000-е гг. Соответствующие им минимумы глубины максимальной температуры и глубины верхней границы слоя АВ приходятся на эти же периоды.

Сопоставление изменений температуры АВ в Арктическом бассейне и в Cеверной Атлантике, начиная от тропической области (рис. 15), показывает присутствие во всех рассматриваемых рядах сходных междесятилетних изменений с преобладанием роста температуры в последние 30 лет. Исключение составляет район 40°–60° с.ш., где имеет место оппозиция аномалий температуры между восточной и западной частями района.


Рис. 15. Аномалии среднегодовой температуры воды на поверхности Северной Атлантики по данным массива HadSST (слева направо: 10° ю.ш.–10° с.ш.; 20°–40° с.ш.; 40°–60° с.ш.) и нормированные аномалии максимальной температуры АВ. Жирные линии – сглаженные по 11 лет, а для Т

АВ


Благодаря активным международным экспедиционным исследованиям в 1990-е и особенно в 2000-е годы, получившим особый размах в период МПГ 2007/08 гг., были получены обширные океанографические данные в разных районах Арктического бассейна. В этот же период стала поступать океанографическая информация с дрейфующих океанографических буев (WHOI). В итоге значительное число океанографических станций покрыло почти всю акваторию Арктического бассейна, что позволило построить средние поля характеристик слоя АВ за десятилетия 1990-х, 2000-х гг. (Алексеев и др., 2009б; 2010а) и сравнить их с полями 1970-х гг., наиболее полно освещенными данными наблюдений в прошлом (Константинов, Грачев, 2000). Метод построения полей представлены в статье (Алексеев и др., 2009б). Аномалии относительно средних за 1970-е годы показаны на рис. 16.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3