Сравнение средних температур за десятилетие 1998–2007 гг. и за самое теплое десятилетие первого потепления показывает (рис. 3), что в среднем за год, весной и летом ПТВ в десятилетие 1998–2007 гг. лет выше во всех рассматриваемых районах (Алексеев и др., 2010б). Однако зимой соотношение обратное для всей области и ее атлантической половины. Осенью 1998–2007 гг. было теплее, при этом самые теплые осенние сезоны в период первого потепления отмечались в конце 1940-х – начале 1950-х годов.
Рис. 3. Средняя ПТВ в самое теплое десятилетия в первом потеплении (первый столбик) и в 1998–2007 гг. (второй столбик) в разные сезоны (слева на право – зима, весна, лето, осень, год) во всей области, в приатлантической и притихоокеанской ее половинах (соответственно, первая, вторая и третья пара столбиков в каждом сезоне)
Сравнение двух потеплений в терминах порядковых статистик рядов среднемесячных данных на 41 станции (с 1921 года) позволяет проследить эволюцию распределения наиболее теплых и холодных месяцев в 1921–2008 гг. Порядковая статистика x
(i)
i=Nnp+np+nNpxp
x(i)
i=Nnp+x1–p
Суммирование отмеченных таким образом лет по всем станциям, состоящее в подсчете числа случаев, когда данный год попадал в выбранный полуинтервал (<x
p
x1–p
Рис. 4. Количество очень теплых (>95 %-уровня) и холодных (<5 %-уровня) месяцев, просуммированное по сезонам, за год и по 9-летним скользящим интервалам 1921–2008 гг. Год на шкале времени относится к началу 9-летнего интервала. Отрицательные значения на вертикальной оси относятся к очень холодным месяцам. Более темный цвет соответствует распределению экстремумов
Указанные особенности потеплений подтверждаются распределением рангов отдельных месяцев за 1901–2009 гг. (таблица 1). С апреля по декабрь все самые «теплые» месяцы приходятся на период с 2003 по 2009 год. Лишь самый «теплый» январь был в 1930 году, а февраль и март – в 1995 и 1996 гг. Наибольшее число самых «теплых» месяцев (по 3) отмечено в 2003 и 2007 гг., самым «теплым» годом стал 2005-й, самое теплое лето пришлось на 2003 год, зима – на 2008 год, весна – на 2007 г., осень – на 2005 год.
Таблица 1. Годы, на которые пришлись самые тёплые месяц, сезон и год, соответствующие 1, 2 и 3 рангам в рядах средней ПТВ в области севернее 60° с.ш. за 1901–2009 гг.
На рис. 2 помимо положительного тренда в изменениях средней ПТВ хорошо выражено долгопериодное колебание, формируемое потеплениями 1930–40-х и 1990–2000-х годов и понижением температуры в 1970-е годы. Предполагается, что это проявление низкочастотного колебания естественного происхождения с периодом 60–70 лет (Schlesinger and Ramankutty, 1994; Delworth et al., 1997; Polyakov and Johnson, 2000), которое обычно называется атлантическим междесятилетним колебанием (осцилляцией (АМО)).
Дисперсионный анализ ряда среднегодовой ПТВ для рассматриваемой области показывает, что на долю этого низкочастотного колебания, аппроксимированного суммой трех (k = 2–4) членов разложения по полиномам Чебышева, приходится 37 % изменчивости среднегодовой ПТВ, в то время как на долю линейного тренда 11 % и на долю остатка, соответственно, 52 %.
Распределение вклада определенного таким образом АМО в изменчивость среднегодовой ПТВ весьма неравномерно (рис. 5). Наибольший вклад (от 22 до 45 %) отмечается на 7 станциях в Гренландско/Исландском районе, который и формирует в значительной степени вклад АМО в изменения средней температуры в Арктике. Разложение АМО в ряд Фурье показывает, что в распределении вклада первой его гармоники также выделяется Гренландско/Исландский регион. Время наступления ее первого максимума здесь приходится на 1940-е годы (рис. 5). Следует отметить, что изменения среднегодовой ПТВ в этом районе отличается необычайно быстрым ростом в течение десятилетия 1920-х годов, не имеющим аналогов ни в одном другом регионе.
Рис. 5. Cлева направо: вклад АМО в изменения среднегодовой ПТВ, вклад первой гармоники Фурье-разложения АМО, год максимума первой гармоники (две последние цифры после 19)
Другая особенность выделенного АМО в том, что рост ПТВ во втором его полупериоде (после 1970-х гг.) отличается от такового в первом полупериоде. Эту особенность можно использовать для приближенной оценки усиления (ослабления) амплитуды колебания вследствие дополнительного внешнего воздействия, предположительно, антропогенного. В пользу предположения об антропогенном усилении АМО после 1970-х годов свидетельствуют результаты экспериментов с глобальными моделями климата при неизменном и растущем содержании СО
2
IPCC, 20072
В таблице 2 приведены результаты расчета усиления тренда в период с 1978 по 2007 год в сравнении с наиболее быстрым ростом ПТВ за 31-летний период первого потепления для каждого сезона и среднегодовой ПТВ.
Таблица 2. Сравнение вклада трендов за 31-летние периоды роста ПТВ в первом и втором потеплениях в области севернее 60° с.ш.
В соответствии с полученными оценками зимой нет усиления роста, а наоборот, рост замедляется. В теплые сезоны с апреля по октябрь усиление потепления весьма значительно как в целом в рассматриваемой области, так и в обеих ее половинах и оно наибольшее в летние месяцы. В среднем за год усиление потепления заметно в тихоокеанской половине области и незначительно в приатлантической части и во всей области. Заключение об усилении тренда ПТВ в последнее 31-летие в теплую часть года по сравнению с трендом в зимние месяцы подтверждается сравнением рангов коэффициентов тренда за оба 31-летних периода (таблица 3).
Таблица 3. Ранг максимального тренда за 31 год в период развития двух потеплений. Год относится к середине 31-летнего периода. В скобках указан ранг
В ноябре, декабре и январе первое потепление развивалось значительно интенсивнее по сравнению с последним потеплением, а в остальные месяцы тренд во второй период был намного сильнее. Особенно велико различие в скорости потепления в июне. Изменение числа «теплых» (Т>95 % уровня) месяцев в 9-летних скользящих интервалах показывает, что в последние 20 лет число «теплых» июней на 41 станции севернее 60° с.ш. увеличилось почти вдвое.
Особый интерес представляют изменения температуры воздуха над областью морской Арктики, включающей покрытую льдами в зимний период акваторию Северного Ледовитого океана (СЛО). Изменения температуры в этой области в первую очередь влияют на зимнее разрастание и летнее таяние ледяного покрова в СЛО. С этой точки зрения оценим изменения положительных летних температур как индикатора летнего теплового воздействия на лед и отрицательных температур за холодный период года, влияющих на максимальное увеличение объема льда зимой. Для этого используем данные 41 станции, расположенных на островах и побережье Северного Ледовитого океана (см. рис. 1), откуда начинается летнее отступление морских арктических льдов.
Средняя за зимние (ноябрь – март) и летние (июнь – август) месяцы приповерхностная температура воздуха (ПТВ) на станциях в морской Арктике показана, начиная с 1951 года, на рис. 6. Видно быстрое убывание отрицательных температур после 1991 года и быстрый рост положительных температур после 1996 года с абсолютным рекордом в 2007 году и понижением в 2008 году. При этом зимние температуры до 1991 года и летние до 1996 года имели слабые отрицательные тренды, которые сменились на значимые положительные тренды.
Рис. 6. а – средние зимние (ХI–III), б – летние (VI–VIII), в – число выходов среднемесячной ПТВ за 95 % уровень, суммированное по скользящим 9-летиям на 41 станции в морской Арктике в 1951–2008 гг.