Жизненная емкость легких – общий объем воздуха, который может быть выдохнут при максимальном выдохе после самого глубокого вдоха, – служит одним из показателей физического развития человека. Занятия спортом и дыхательные упражнения повышают жизненную емкость, а все причины, затрудняющие дыхательные движения, снижают ее и тем самым ухудшают снабжение организма кислородом (рис. 2).
Она в среднем равна 3500 мл у мужчин и 2700 мл у женщин, а у хорошо тренированных лиц может достигать 6000 мл. При этом даже после весьма интенсивного выдоха в легких обязательно остается около 1500 мл так называемого остаточного воздуха.
Объем воздуха, проходящий через легкие за одну минуту, называют минутным объемом дыхания. В норме он равен 4000 – 6000 мл. При мышечной работе он увеличивается, например, у спортсменов при беге – до 30 л.
В покое взрослый человек делает примерно 16 дыханий в одну минуту. За каждый вдох в легкие попадает около 50 мл воздуха. При самом глубоком вдохе можно дополнительно вдохнуть около 1500 мл воздуха, а при самом глубоком выдохе выдохнуть еще 1500 мл резервного воздуха, однако и после этого в дыхательной системе останется еще около 1500 мл воздуха.
Не весь объем вдыхаемого воздуха участвует в газообмене. При каждом вдохе около 150 мл его остается в полости носа, ротовой части глотки, носоглотке, гортани, трахее, бронхах. Этот объем воздуха называют вредным пространством.
Итак, в легкие во время вдоха поступает воздух, который по дыхательным путям доходит до мелких разветвлений бронхов. Далее кислород посредством диффузии достигает альвеол и смешивается с альвеолярным воздухом. В альвеолах происходит интенсивный обмен газов, но химический состав альвеолярного воздуха изменяется совсем незначительно, хотя заметно отличается от атмосферного. Его состав остается довольно постоянным при вдохе и выдохе за счет того, что в альвеолы из воздухоносных путей непрерывно диффундируют молекулы кислорода и удаляются молекулы углекислого газа. Это имеет большое физиологическое значение для поддержания постоянства внутренней среды организма. Благодаря альвеолярному воздуху, выполняющему роль посредника, кровь непосредственно не соприкасается с окружающим нас воздухом.
Рис. 2. Легочные объемы и емкости
Легочная вентиляция определяется глубиной дыхания (дыхательным объемом) и частотой дыхательных движений. В покое дыхательный объем мал по сравнению с общим объемом воздуха в легких. Таким образом, человек может как вдохнуть, так и выдохнуть большой дополнительный объем. Однако даже при самом глубоком выдохе в альвеолах и воздухоносных путях легких остается некоторое количество воздуха.
Газообмен
Газообмен между воздухом и кровью через стенки альвеол и легочных капилляров и между кровью и клетками через стенки тканевых капилляров происходит посредством диффузии. В альвеолах легких кислород диффундирует в кровь, а углекислый газ – из крови в воздух. Артериальная кровь от легких движется к тканевым капиллярам, где происходят обратные по направлению процессы обмена газов между тканями и кровью.
У здорового человека в нормальных условиях давление кислорода в альвеолярном воздухе больше, чем в венозной крови, притекающей к легочным капиллярам. В отношении углекислого газа наблюдается как раз обратное: его давление в альвеолярном воздухе меньше, чем в венозной крови и тем более в тканях, где он постоянно образуется в результате жизнедеятельности клеток. Разности давлений, существующие между кислородом в альвеолярном воздухе и в венозной крови и между углекислым газом в притекающей крови и в альвеолярном воздухе, являются физической причиной перехода кислорода из воздуха в кровь и углекислого газа из крови в альвеолярный воздух. Газы диффундируют в направлении, определяемом разностью давлений (напряжений) внутри и снаружи капиллярных стенок. Вследствие диффузии (самопроизвольного проникновения молекул газа из места с большим давлением в место, где давление газа меньше) кислород из альвеолярного воздуха переходит в кровь, а углекислый газ, принесенный в легкие кровью, переходит из нее в альвеолярный воздух и удаляется в атмосферу.
Скорость диффузии в легочных капиллярах довольно велика, и за время движения крови по ним (около 2 секунд) давление газов внутри и снаружи капилляров успевает выровняться. Поэтому можно считать, что напряжение (давление) газов в альвеолах и артериальной крови одинаково. В тканевых капиллярах скорость диффузии газов на границе кровь – ткань сравнительно мала, и давление газов в крови не успевает достичь величины, равной давлению в тканях. Поэтому давление газов в венозной крови на некоторую величину отличается от давления газов в тканях.
Перенос газов кровью
Перенос газов кровью представляет собой доставку O
2
2
Газообмен в легких и тканях организма становится возможен благодаря транспортной системе крови, которая циркулирует по замкнутому кругу, содержащему два участка капилляров: легочных и тканевых. Не приходится доказывать, что функция дыхательной системы неразрывна с деятельностью сердечнососудистой, и обе они нерасторжимы при выполнении первостепенной задачи: доставки органам и тканям кислорода и удаления избытка углекислого газа.
Процесс переноса газов кровью тоже не простой. Проникшие из альвеол в плазму крови молекулы кислорода недолго остаются свободными, так как связываются с гемоглобином, находящимся в красных кровяных тельцах – эритроцитах. Дыхательный белок гемоглобин, вступая в соединение с кислородом, образует оксигемоглобин, и тем самым кровь переносит намного больше кислорода, чем если бы газ просто растворялся в ее плазме. В артериальной крови, оттекающей от легких, почти весь гемоглобин соединен с кислородом и превращен в оксигемоглобин. Нестойкое соединение кислорода с гемоглобином в концентрированном виде в эритроцитах доставляется к тканям.
Будучи доставленным в мельчайшие кровеносные капилляры, пронизывающие все органы и ткани тела, оксигемоглобин легко освобождает кислород. Химическое сродство (способность удерживать молекулу кислорода) гемоглобина с кислородом зависит также от содержания углекислого газа: чем его больше, тем быстрее расщепляется оксигемоглобин.
Выделившийся кислород проникает далее через клеточную оболочку и участвует в тканевом дыхании. Навстречу этому процессу протекает другой, взаимосвязанный с ним: из клетки в кровь поступает углекислота. Гемоглобин, отщепивший от себя кислород, тут же вступает в связь с углекислым газом: чем меньше кислорода в крови, тем больше химически связанного углекислого газа.
Кислород, переносимый с током крови в различные ткани и органы, начинает переходить из крови в клетки этих тканей и органов, так как вследствие непрерывной работы клеток происходит непрерывное потребление кислорода и выделение углекислоты. Концентрация кислорода в клетках всегда ниже, чем в притекающей крови, а концентрация углекислоты всегда выше.
Таким образом на всем своем пути от легких через кровь к тканям кислород движется из области его более высокой концентрации в область более низкой и, наконец, утилизируется (употребляется) в клетках.
Примерно то же самое происходит и с углекислым газом, который движется из работающих органов (то есть мест более высокой его концентрации) через кровь к легким, где концентрация его минимальна.