В основе заблуждения о наличии связи между уровнем финансирования национальной науки и экономическим благополучием нации, по мнению Т. Кили, лежит так называемая линейная модель экономического роста, предложенная Фрэнсисом Бэконом: науку должно финансировать государство, потому что, вопервых, именно из фундаментальной науки вырастают новые технологии, а вовторых, именно новые технологии обеспечивают экономический рост. То есть эту линейную модель можно представить следующим образом: государственное финансирование фундаментальная наука прикладная наука экономический рост. Однако, как отмечает ученый, еще Адам Смит опроверг эту модель в 1776 г. в своей книге «Исследование о природе и причинах богатства народов». Он считал, что академическая наука «вытекает» из прикладной или «промышленной» науки, а не наоборот: «Улучшения, внесенные в современную эпоху в ряд областей философии [науки], большей частью родились не в университетах» [цит. по: 1]. Также поводом усомниться в эффективности использования денег, выделяемых государством университетам, для Адама Смита была коррупция в тогдашних Кембридже и Оксфорде.
Иллюстрацией неэффективного использования национальных государственных бюджетов на научные исследования являются результаты проверки Росфиннадзора, проведенной в 2010 г., которая оценила ущерб от неэффективного использования госрасходов на НИОКР в 2009 г. в 480 млн. руб. Экспертиза научных отчетов показала, что никакой научной ценности они не представляют: их содержание не актуально и не соответствует поставленным целям НИОКР. При проверке отчетов через систему «Антиплагиат» выяснилось, что либо авторы использовали чужой текст без оформления ссылок, либо от 5 до 58 % текста составляют цитаты и выдержки из российского законодательства. Общая сумма неэффективного использования бюджетных денег из-за перепечатки чужих авторских текстов в научных отчетах, по данным Росфиннадзора, составляет 157,3 млн. руб.
Еще одна проблема, на которую указывает Росфиннадзор, отсутствие запатентованных результатов НИОКР. В 2009 г. было заключено 1586 госконтрактов на 6,2 млрд. руб., их результатом стали всего лишь две разработки программного обеспечения стоимостью 30 млн. руб., подлежащие правовой защите, да и они оказались не зарегистрированы в Роспатенте.
Отсутствие диффузии национального научного знания, а значит и неэффективное его использование, слабая интегрированность в глобальное профессиональное знание иллюстрирует следующий обнаруженный нами факт. Более половины из 395 медицинских российских журналов в Российском индексе научного цитирования по состоянию на май 2011 г. имели нулевой импакт-фактор. Иными словами, их никто не читает и не цитирует! Вот типичная статистика по цитируемости публикаций одного из самых публикующихся российских медицинских исследовательских центров НИИ онкологии им. Н.Н. Петрова. Из 600 статей института, опубликованных за 20062011 гг., 445 статей никто ни разу не процитировал и лишь одна статья за пять лет процитирована 30 раз [2]. Для сравнения статья нобелевского лауреата К.С. Новоселова получила более 4700 ссылок за пять лет с момента своего опубликования.
Общественное мнение все чаще недоумевает и по поводу прогностических возможностей науки. Разразившийся финансовый кризис, который не был предсказан ведущими экономическими школами, полное бессилие мирового метеорологического сообщества в прогнозировании природных катаклизмов, неспособность медицины в разы сократить случаи сердечнососудистых, неврологических, онкологических и прочих заболеваний все это делает небезосновательными упреки в адрес науки и ставит под сомнение необходимость увеличения расходов на ее финансирование.
Все вышеизложенное дает объяснение тому факту, что все государства, ведущие масштабные научные исследования, пытаются повысить эффективность финансовых вложений в научно-исследовательские направления и проекты, дифференцировать свои затраты, найти ответы на вопросы о том, какие области фундаментальной науки и прикладной науки следует поддерживать в большем, а какие в меньшем объеме, какие организационные, кадровые и технологические ресурсы и средства потребуются для развития инновационной экономики.
Однако предложить объективные ответы на все эти вопросы не может ни одно профессиональное экспертное сообщество (как бы тщательно оно ни было сформировано), в силу того что научное знание прирастает в такой геометрической прогрессии, что охватить его, проанализировать и длительное время отслеживать физиологически невозможно.
Именно поэтому международным трендом, сформировавшимся буквально в последние три года, стала детальная алгоритмизация и визуализация развития различных научных направлений или дисциплин, что позволяет увидеть соответствие национального и мирового уровня исследований по целой совокупности наукометрических показателей.
В 20082011 гг. в качестве интеллектуальных сервисов к информационным ресурсам компаний «Thomson Reuters», «Elsevier» и «Questel» были разработаны уникальные аналитические системы, позволяющие алгоритмизировать процесс мониторинга развития отдельных областей науки и оценки соответствия национальных исследований лучшему мировому уровню. Одновременно появилось несколько семантических поисковых систем, реализующих принцип «легче и дешевле найти нужное научное решение в том, что уже изучено, чем заказывать новое».