В состав таких комплексов войдут технические средства навигационного сопровождения морского и воздушного транспорта, обнаружения сигналов бедствия, радио- и телевизионной связи словом, всего того, что пока порознь поручается специализированным спутникам.
Исследование и освоение космического пространства (несмотря на более чем полувековую его историю) только начинается. И обязательно будет открываться новое «применение космоса». Даже крайняя удалённость и изоляция космических аппаратов может быть с успехом использована для опасных экспериментов. Например, в опытах по генной инженерии с микроорганизмами, когда существует опасность выхода их из-под контроля и возникновения эпидемий и пандемий в масштабах Земли. Удобно работать в условиях космоса и с вредными веществами: изотопами, сильнодействующими ядами, мутагенными препаратами, которые лучше бы вынести за пределы Земли.
Человек в мечтах не раз забирался в небесную высь. Правда, высь он нередко считал своего рода скорлупой. Анаксимен в VI веке до новой эры представлял себе Землю, окружённую твёрдой сферой, в которую вбиты золотыми гвоздями звёзды. Века развития перечеркнули наивные представления, но оказалось, что ограничивающая небесная оболочка есть. Проникновению в небесную высь даже взором мешает прозрачная атмосфера. Воздушный слой отсекает гамма-лучи, рентгеновское, ультрафиолетовое, субмиллиметровое излучения. А ведь Вселенная рассказывает о себе в широком диапазоне электромагнитных волн.
Космическая астрономия стала всеволновой. Подъём аппаратуры выше атмосферных высот позволил эффективно использовать разные телескопы. Уже на первых станциях «Салют» успешно работали телескопы: рентгеновский, ультрафиолетовый, оптический, инфракрасный, субмиллиметровый, гaмма- и радиотелескопы. Космические телескопы добавили к «астрономическим объектам» ещё один планету Земля. Изучение Вселенной в спутниковую эпоху уточнило наши представления о звёздном пространстве и космических связях Земли.
Если первые орбитальные телескопы только начинали использовать космические возможности, то телескоп «Хаббл» их блистательно продолжил. Космический телескоп «Хаббл» совместный проект NASA и Европейского космического агентства. Свыше двадцати лет он бессменно дежурит на высокой орбите. Размещение его вне Земли позволило беспрепятственно регистрировать электромагнитные излучения в непрозрачном для наблюдений с Земли диапазоне, и прежде всего инфракрасное излучение.
Эта автоматическая внеземная обсерватория внесла массу поправок в анкеты дальних планет. Её замерами уточнён возраст расширяющейся Вселенной 13,7 миллиарда лет. Выписан процесс формирования планет у звёзд, уточнена теория сверхмассивных чёрных дыр, подтверждена гипотеза изотропности Вселенной.
На «Салюте-6» и «Салюте-7» постоянно работали фотокомплексы МКФ-6М и КАТЭ-140. Разработанная советскими специалистами и их коллегами из ГДР и изготовленная на предприятии «Карл Цейсс Йена» многозональная камера МКФ прошла натурную орбитальную обкатку в сентябре 1976 года в полёте «Союза-22».
Шесть фотокамер МКФ-6М вели синхронную съёмку. Чтобы изображения совпали, оптические оси всех шести объективов фотосистемы должны быть строго параллельными. Для предотвращения смаза изображения из-за движения орбитального комплекса аппарат МКФ-6M был снабжён специальным устройством, сдвигающим камеру в момент фотографирования в сторону, обратную направлению движения «Caлютa». Кроме того, благодаря перекрытию кадров аппарата обеспечивалось получение стереоскопического объёмного эффекта.
Уникальность многозонального фотографического комплекса МКФ-6М заключалась и в том, что, помимо получения контрастного изображения земной поверхности, он был способен регистрировать её точный световой образ. Каждая точка фотоснимка строго фиксирует величину отражённого солнечного светового потока и теплового излучения земной поверхности. Это обеспечивается высокой точностью всего фотокомплекса, а также малым разбросом его характеристик: выдержки, величины диафрагмы, оптических свойств.
Фотокамера КАТЭ-140 обеспечивала получение фотоснимков высокого качества и большой геометрической точности, что достигалось использованием совершенного объектива и оригинальным устройством сaмогo аппарата. В частности, для исключения ошибок, вызываемых неровным положением плёнки в фотоаппарате, в камере КАТЭ-140 создавалось разрежение между плёнкой и прижимным столом кассеты: вакуyм-помпа, входящая в состав фотоаппарата, помогала присасывать плёнку, способствуя её плотному прилеганию. Как и другие космические фотокомплексы, камера КАТЭ-140 имела электроуправление: все операции, начиная с перемотки nлёнки, взведения затвора и кончая командой на фотографирование, регулировались электрическими сигналами, поступающими с командногo пульта.
Фотокамера КАТЭ-140 обеспечивала получение фотоснимков высокого качества и большой геометрической точности, что достигалось использованием совершенного объектива и оригинальным устройством сaмогo аппарата. В частности, для исключения ошибок, вызываемых неровным положением плёнки в фотоаппарате, в камере КАТЭ-140 создавалось разрежение между плёнкой и прижимным столом кассеты: вакуyм-помпа, входящая в состав фотоаппарата, помогала присасывать плёнку, способствуя её плотному прилеганию. Как и другие космические фотокомплексы, камера КАТЭ-140 имела электроуправление: все операции, начиная с перемотки nлёнки, взведения затвора и кончая командой на фотографирование, регулировались электрическими сигналами, поступающими с командногo пульта.