Александр Бакулин - Гравитация и эфир стр 124.

Шрифт
Фон


Рис. 21.9


Фактически на нижних диаграммах рисунка 21.9 представлена структура фотона, излучаемого атомом во время всего переходного (излучательного) процесса. В качестве огибающей этого сигнала мы выбираем закон изменения усреднённой напряжённости суммарного поля, излучаемого атомом (электроном и протоном). Если представить как , то выражение для «радиотехнического сигнала» (фотона), излучаемого атомом, будет следующим:



То есть в качестве мы имеем последовательность «отсчётов» сигнала в точках Амплитуда каждого такого отсчёта равна значению функции в этой точке отсчёта.

Последнее выражение определяет характер не сигнала, принимаемого в точке 5, но только сигнала излучаемого атомом «в точке излучения», то есть как бы «на выходе из атома». Но в точку приёма 5 этот сигнал придёт ослабленным пропорционально радиусу удалённости точки 5 от атома (R). Мы утверждаем, что закон изменения напряжённости поля по мере удаления фотона от источника (от атома) будет обратно пропорциональным не квадрату радиуса удалённости R, но обратно пропорциональным первой степени этого радиуса:

Все эти наши объяснения по поводу формул для излучаемых фотонов это, грубо говоря, «объяснения на пальцах». В данной главе мы не ставим задачу досконального (математически грамотного) вывода показа каких-то формул, но здесь впервые (и вот это «впервые» мы жёстко утверждаем) показываем школьнику (а заодно и профессионалам) примерную физику настоящего процесса излучения настоящих (эфирных) квантов, излучаемых атомом и называемых «фотоном». Про диаграммы можно приводить ещё очень много всяких подробностей. Но скажем сейчас главное. Мы утверждаем, что если временной сигнал усреднённой огибающей



как функцию времени, подвергнуть далее преобразованию Фурье, то мы получим тот спектр того фотона, который излучил атом в данном его переходном процессе. И именно этот спектр видят всегда физики-спектроскописты, исследующие, например, нагретый газ водорода. В реальности они видят спектр, излучаемый не одним атомом (формулы Бора или Бальмера говорят о спектре единичного атома), но сразу многими атомами. То есть они видят как бы сумму многих и многих огибающих В частности, если предположить, что все эти атомы возбуждаются точно так, как показано у нас на рисунке 21.9, то они увидят лишь одну линию этого спектра, примерно соответствующую линии перехода в атоме водорода между орбитой 2 (Бор говорит «между уровнем энергии квантового числа n = 2») и орбитой 1 (на этой последней терминологии «орбита 1»  мы можем уже настаивать в нашей квантовой физике). То есть время переходного процесса огибающей () обязано соответствовать той планковской частоте ν в знаменитой формуле Планка,



где частота ν будет соответствовать конкретной единичной спектральной линии, которую видят в микроскопы спектроскописты в виде-образе «длины волны». Эта «длина волны»  это расстояние между последовательными светлыми линиями (именно эти «светлые линии» видят в микроскоп исследователи). Измерив же это расстояние как длину волны колебательного процесса, воспринимаемого «на глаз» в виде светлых и тёмных полосок в окуляре микроскопа, они вычисляют частоту этого процесса (как какого-нибудь светового луча данной частоты, падающего на экран «измерительную дифракционную решётку»), по формуле:



Ниже по тексту мы приведём конкретную методику вычисления конкретной спектральной линии.

Ещё раз, но уже более понятно для школьника, то есть без обращения к фурье-преобразованиям. Глядя на нижнюю диаграмму рисунка 21.9, мы видим то, как атом, быстро возбудившись, затем «медленно» успокаивается. При этом электрон движется по эллипсо-подобной орбите, медленно приближаясь «круг за кругом» к первой круговой атомной орбите. В переходном процессе левого атома электрон большую часть времени смещён в сторону пробного заряда точки 5, то есть атом суммой двух «зарядов» (электрона и протона) излучает всегда усреднённую отрицательную амплитуду поля E. В правом атоме электрон в среднем смещён дальше от точки 5, чем «стоящий на месте» положительный протон. Поэтому здесь атом излучает усреднённое положительное поле для точки 5. То есть в среднем за весь переходный процесс левый атом будет излучать в точку 5 только сплошь отрицательные кванты энергии, а правый атом только положительные кванты энергии. Но спектроскописты никогда не видят излучение отдельного атома. Они воспринимают процесс излучения сразу многих атомов. А эти возбуждения большого количества атомов всегда подчинены закону больших чисел. Который говорит о том, что, например, в газе число «положительных» атомов, излучающих в данное мгновение положительный квант энергии в точку наблюдения за газом, с большой степенью точности равно числу «отрицательных» атомов, излучающих в эту же точку в это же мгновение «отрицательные» кванты энергии.

Поэтому общий поток фотонов, падающих на измерительный прибор физиков (например, на дифракционную решётку) будет состоять из большого количества положительных и отрицательных полуволн как отдельных положительных и отрицательных «квантов энергии». И поскольку этих положительно-отрицательных пар квантов энергии будет, с большой степенью точности, одинаковое количество, то их сумму можно выстраивать-рассматривать в виде некоторого непрерывного (а на самом деле чётко прерывного) синусоидального сигнала. Частота этой суммарной синусоиды будет соответствовать двум полу-периодам огибающей переходного атомного процесса. То есть полупериод этой синусоиды (именно полупериод, а не полный период) будет говорить о том, за какое время успокаивается переходный процесс после каждого возбуждения каждого конкретного атома.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3