Джоуль, в свою очередь, пришел к этому откровению в процессе работы над оптимизацией операций на своей пивоварне, первоначально планируя просто сравнить разные типы двигателей. До этого он использовал паровые двигатели, но хотел определить, не окажутся ли новоизобретенные электрические моторы более эффективными и потому менее затратными. Его исследование началось как чисто практический опыт, но потом Джоуля захватил вопрос о том, как энергия переходит из одной формы в другую. Он определил механический эквивалент тепла сколько механической работы требуется проделать, чтобы произвести заданное количество тепла, и в 1843 г. представил результаты Британской ассоциации содействия науке, где его сообщение было встречено каменным молчанием. Майер, опубликовавший работу в 1841 и 1842 гг., встретил еще более серьезное сопротивление своим идеям. Однако всего через несколько лет физики убедительно продемонстрировали связь между различными формами энергии и их взаимозаменяемость. С 1847 г. закон сохранения энергии признавался большинством исследователей.
Одним из теоретических следствий открытия закона сохранения энергии была смерть, по крайней мере в научном мире, идеи «машин вечного движения» двигателей, которые, если их однажды запустить, могут работать вечно. Сохранение энергии указывает не только на существование некоего конечного источника энергии для любой изолированной машины, но и на то, что эта машина будет неуклонно превращать свою энергию в тепло, которое невозможно использовать. Такой вывод не помешал одному автору в 1897 г. предположить, хотя, вероятно, со значительной долей иронии, что вечное движение можно получить при помощи кошек.
«Во Фрипорте, штат Иллинойс, на участке площадью 160 акров, по утверждению биржи, будет основано новое предприятие. Предприимчивый фермер соберет 1000 черных кошек и 5000 крыс, которыми он будет кормить кошек; по оценке, численность кошек за два года увеличится до 15 000, причем их шкурки будут продаваться по $1 штука. Крысы будут плодиться в пять раз быстрее, чем кошки, и использоваться для кормления кошек, тогда как ободранные тушки кошек пойдут на корм крысам. Наконец-то вечное движение открыто!» журнал Lippincotts Magazine.
Вот так открытие! В природе этот патентованный хитроумный процесс с вечным движением крыс и кошек работает с тех самых пор, когда старик Ной был матросом{2}.
Мы легко увидим, как и почему эта схема даст сбой, не углубляясь особенно в слишком абстрактные рассуждения о сохранении энергии. Даже если кошки будут съедать крыс абсолютно целиком, без малейшего остатка, то сами кошки на корм крысам пойдут отнюдь не целиком. В системе будет происходить неизбежная потеря массы, и фермеру, прежде чем браться за этот проект, неплохо бы слегка подучить физику.
Если на признание закона сохранения энергии потребовалось некоторое, и немалое, время, то другой закон сохранения закон сохранения импульса можно найти непосредственно в законах движения Исаака Ньютона. Мы можем просуммировать эти законы, которые впервые появились в несколько ином виде в Ньютоновых «Началах», следующим образом:
1. Любой объект остается в покое или продолжает двигаться с постоянной скоростью, если на него не действует внешняя сила: закон инерции.
2. Сумма внешних сил, действующих на объект, равна произведению массы объекта на его ускорение:
(сила) = (масса) × (ускорение).
3. Если один объект действует на второй с некоторой силой, то второй тоже действует на первый с силой, равной по величине и противоположной по направлению: любое действие вызывает противодействие, равное по силе и противоположное по направлению.
Импульс объекта, определяемый как «(масса) × (скорость)», можно приблизительно описать как количество в объекте «живости». Если два объекта движутся с одинаковой скоростью, но имеют разные массы, то объект с большей массой обладает и бóльшим импульсом; если два объекта имеют равные массы, но движутся с разными скоростями, то объект с большей скоростью обладает и бóльшим импульсом. Когда на дороге сталкиваются легковая машина и грузовик, то грузовик, как правило, давит легковушку, поскольку обладает большей массой и обычно имеет больший импульс.
Из законов Ньютона косвенно следует, что в любой изолированной физической системе импульс сохраняется. Первый закон Ньютона гласит, что скорость объекта не меняется, если на него не действует внешняя сила; следовательно, импульс изолированного объекта не может спонтанно измениться. Поскольку ускорение объекта это скорость изменения его скорости, то, согласно Второму закону Ньютона, сила соответствует изменению импульса. Третий закон Ньютона гласит, что если импульс одного из взаимодействующих объектов изменяется, то импульс второго должен измениться в точности противоположным образом так, чтобы суммарный импульс системы остался прежним.
Для демонстрации закона сохранения импульса часто используют бильярдные шары. Если биток послать кием точно в восьмой шар, то биток остановится, а восьмой шар продолжит его движение в том же направлении и с той же скоростью; при этом импульс битка будет полностью передан восьмому шару.