Вот неформальная модель, которую я использую ежедневно. Будучи мамой троих детей, я сама готовлю еду мой муж, милейший человек, каждый раз забывает посолить макароны. Каждый вечер, когда я начинаю готовить ужин на всю семью, я внутренне и интуитивно моделирую аппетит каждого домочадца. Я знаю, что один из сыновей любит курицу (но ненавидит гамбургеры), а другой ест только пасту (с дополнительной порцией тертого пармезана). Но я также принимаю во внимание то, что их аппетиты меняются в разные дни поэтому в мою модель может вкрасться ошибка. В ней всегда будет неизбежный элемент неопределенности.
В мою модель вкладывается информация о моей семье, об ингредиентах, которые у меня уже имеются или мне доступны, а также моей собственной энергии, времени и амбициях. На выходе я получаю решение, что и как мне приготовить. Я оцениваю успех ужина степенью удовлетворенности моей семьи, а также количеством съеденного и тем, насколько еда была здоровой. То, насколько хорошо принимают приготовленную мной еду и сколько ее съедают, позволяет мне обновить свою модель к следующему приготовлению ужина. Обновления и уточнения делают модель динамической так это называется в статистике.
С гордостью могу сказать, что со временем я научилась очень неплохо готовить для своей семьи. Но представьте, что нам с мужем нужно уехать на неделю, а мне понадобится объяснить свою модель моей маме, чтобы она смогла меня заменить? Или если моя многодетная подруга заинтересовалась моим подходом? В этот момент я попытаюсь придать моей модели какие-то более формальные черты, сделать ее более систематической и, в каком-то смысле, более математической. Если у меня хватит амбиций, я даже могу создать на ее основе компьютерную программу.
В идеале такая программа учтет все возможные варианты ингредиентов, их питательность и стоимость, а также будет включать полную базу данных о вкусах моей семьи, все любимые и нелюбимые блюда и продукты моих домочадцев. Однако мне будет не так уж просто взять и извлечь всю эту информацию из собственной головы. Да, у меня полно воспоминаний о том, как кто-то попросил добавку спаржи или заявил, что терпеть не может стручковую фасоль, но эти воспоминания перемешаны мне будет сложно свести их в один список.
Лучшим решением станет доработка модели с течением времени ежедневный ввод информации о том, что я купила и приготовила, и какой отклик от каждого члена семьи получила. Я смогу также задавать те или иные параметры и ограничения. Я могу ограничить по сезону фрукты и овощи, зато раздать определенное количество печенья «Поп-тартс», чтобы предотвратить открытый бунт. Можно ввести и другие параметры, запомнить, кто больше любит мясо, кто хлеб и пасту, кто пьет много молока, а кто настаивает, чтобы любой предмет на его тарелке можно было намазать нутеллой.
Если бы я посвятила все свое время этой работе, то за несколько месяцев могла бы получить весьма неплохую модель. Я бы превратила систему приготовления еды, хранящуюся в моей голове, мою неформальную внутреннюю модель в формальную внешнюю. В этой модели я бы вынесла наружу, во внешний мир, свои знания и умения. Я бы построила автоматическую версию себя, которой могли бы воспользоваться другие люди даже в мое отсутствие.
Однако в ней всегда бы были ошибки, потому что любые модели всегда представляют собой упрощения. Ни одна модель не может включить в себя всю сложность мира или нюансы человеческого общения. Какая-то важная информация неизбежно оказывается упущенной. Возможно, я бы забыла сообщить своей модели о том, что правило запрета на фастфуд менее строго соблюдается в дни рождения или что сырая морковка пользуется большей популярностью, чем вареная.
Чтобы создать модель, таким образом, мы делаем выбор и решаем, что достаточно важно для включения в нее. Мы упрощаем мир до его игрушечной версии, которая может быть легко понята и из которой мы можем извлечь важные факты и действия. Мы ожидаем от модели выполнения только одной работы и заранее смиряемся с тем, что иногда она будет работать бестолково, с огромными пробелами.
Чтобы создать модель, таким образом, мы делаем выбор и решаем, что достаточно важно для включения в нее. Мы упрощаем мир до его игрушечной версии, которая может быть легко понята и из которой мы можем извлечь важные факты и действия. Мы ожидаем от модели выполнения только одной работы и заранее смиряемся с тем, что иногда она будет работать бестолково, с огромными пробелами.
Иногда пробелы не имеют значения. Когда мы запрашиваем у Google Maps маршрут, программа моделирует мир как набор улиц, туннелей и мостов. Она игнорирует здания, потому что те не имеют отношения к задаче. Когда авиационное программное обеспечение управляет самолетом, оно моделирует ветер, скорость самолета и посадочную полосу внизу, но игнорирует улицы, туннели, здания и людей.
Пробелы модели отражают суждения и приоритеты ее создателей. И хотя выбор при составлении Google Maps и авиационного программного обеспечения кажется очевидным, в других случаях он гораздо более проблематичен. Если мы вернемся к примеру вашингтонских школ, их модель подсчета увеличения коэффициента знаний учеников оценивает учителей по большей части на основе данных тестов учеников, игнорируя такие факторы, как вовлеченность учителя в процесс, его работу над определенными навыками, классное руководство и помощь ученикам в их личных и семейных проблемах. Она слишком проста и жертвует точностью и охватом во имя эффективности. При этом, с точки зрения администраторов, она предоставляет эффективное орудие для выявления сотен якобы негодных учителей даже если существует риск неверной интерпретации профессионализма некоторых из них.