Наконец, это оружие математического поражения обрекает большой процент наших детей на жизнь без нормального распорядка дня. За завтраком их мать сидит с остекленевшим взглядом из-за недостатка сна, вечером она выскакивает за дверь не поужинав, а ближе к выходным упрашивает свою маму посидеть с внуками утром в воскресенье. Такой хаос в жизни оказывает на детей глубокое воздействие. Согласно данным исследования, проведенного Институтом экономической политики, маленькие дети и подростки у родителей, которые работают по непредсказуемому расписанию или за пределами стандартного дневного рабочего времени, с большей вероятностью отличаются сниженным интеллектом и проблемным поведением.
Родители могут винить себя в том, что их дети плохо ведут себя в школе или получают плохие оценки, но во многих случаях истинный виновник ситуации бедность, заставляющая людей хвататься за работу с непредсказуемым расписанием, которое составляют математические модели, делающие жизнь бедных семей еще более невыносимой.
Корень проблемы, как и со многими другими видами ОМП, в том, какая именно цель выбрана составителями модели. Модель оптимизируется под эффективность и максимальную прибыль, а не под справедливость или «благо команды». Это, конечно же, сущность капитализма. Для компаний доходы как воздух. Деньги поддерживают в них жизнь. Для капиталистов было бы невероятно глупо, даже неестественно отворачиваться от возможной прибыли. Именно поэтому общество нуждается в противодействующих силах, таких как постоянное освещение в прессе, проливающее свет на злоупотребления эффективности и призывающее компании к справедливости. А если компании буксуют на этом пути, как случилось со Starbucks, нужно высвечивать их злоупотребления снова и снова. Также ситуация нуждается во внешнем регулировании, которое бы удерживало компании от злоупотреблений, в сильных профсоюзах, которые организовывали бы работников и выражали их нужды и жалобы. И в политиках, готовых принимать законы, ограничивающие самые тяжелые злоупотребления. После публикации статьи в New York Times в 2014 году демократы в Конгрессе оперативно подготовили законопроект, ограничивающий применение программ, составляющих рабочие расписания. Но с республиканским большинством, которое яростно противится усилению государственного вмешательства в экономику, шансы на принятие этого закона были равны нулю. Инициатива заглохла.
В 2008 году, перед началом экономического кризиса, компания Cataphora из Сан-Франциско вывела на рынок систему ПО, ранжировавшую работников сферы высоких технологий по ряду параметров, в том числе по их способности генерировать идеи. Это было непросто. В конце концов, компьютерным программам сложно отличить интересную идею от любого другого набора слов. Если вдуматься, разница зачастую только вопрос контекста. Вчерашние идеи о том, что Земля круглая, или даже о том, что людям может понравиться рассматривать фотографии друг друга в социальных сетях, это сегодняшние факты. Мы, люди, все чувствуем, когда идея становится установленным фактом, и знаем, когда она была разоблачена или отброшена, хоть и можем зачастую не соглашаться с этим. Однако это отличие ставит в тупик даже самый продвинутый ИИ. Поэтому системе Cataphora пришлось обратиться за подсказками к самим человеческим существам.
Cataphora забралась в корпоративную почту и мессенджеры в поисках идей. За основную гипотезу при этом принималось, что лучшие идеи имеют тенденцию распространяться более широко через сетевое общение. Если люди копируют и вставляют в свои сообщения определенные группы слов и делятся ими, эти слова, скорее всего, окажутся идеями и программное обеспечение сможет их учитывать.
Но не все было так просто. Идеи не единственные группы слов, широко распространяемые по социальным сетям. Мемы, например, пользовались бешеной популярностью и озадачивали компьютер. Также с огромной скоростью распространялись и слухи. Однако шутки и слухи следовали определенным паттернам, поэтому выяснилось, что можно научить программу отфильтровывать их, по крайней мере частично. Со временем система начала идентифицировать группы слов, которые, скорее всего, представляли собой идеи. Она отслеживала их через социальные сети, подсчитывая количество копирований, оценивая их распространенность и идентифицируя их источник.
Очень скоро образы наемных работников, казалось, приобрели четкие очертания. Некоторые из них были генераторами идей, как заключила система. На своей схеме работников Cataphora пометила таких генераторов идей кружками, которые были тем больше и тем темнее, чем больше идей генерировал сотрудник. Другие работники были проводниками словно нейроны в распределенной сети, они переносили информацию. Самые эффективные проводники разносили определенные фразы по всей сети. Система также обозначила этих людей темным цветом.
Независимо от того, насколько эффективно Cata-phora измеряла потоки идей, сама концепция не была безнравственной. Вполне разумно воспользоваться подобным анализом, чтобы идентифицировать знания людей и соединять их с самими многообещающими коллегами и соавторами. IBM и Microsoft используют корпоративные программы именно для этих целей. Эта система очень похожа на алгоритм сайтов знакомств (и зачастую, без сомнения, она выдает столь же посредственные результаты). Большие данные также использовались для изучения продуктивности работников кол-центров.