В первую очередь я говорю об эукариотических организмах, то есть о тех, клетки которых содержат ядра. В ядре каждой клетки находятся хромосомы компактно упакованные с помощью специальных белков комплексы нуклеиновых кислот, содержащие наследственную информацию. Основа каждой хромосомы это, собственно, та самая длинная спиралевидная молекула ДНК, которую так любят изображать на псевдобиологических экранных заставках. Полный набор хромосом, содержащихся в одной клетке, называется кариотипом.
Например, нормальный кариотип мужчины Homo sapiens записывается как 46, XY, а женщины 46, XX. Это означает, что у человека в соматических (не половых) клетках по 46 (23 пары) хромосом, и из них 44 одинаковые (аутосомы). Оставшиеся две хромосомы это как раз пары XY и XX, которыми отличаются разнополые представители одного вида. У женщин хромосомы этой пары одинаковы (X и X), а у мужчин две оставшиеся хромосомы непарные (X и Y). Половые клетки (гаметы) имеют одинарный (гаплоидный) набор хромосом, то есть у человека это 22+X или 22+Y. У женщин, как нетрудно догадаться, может образоваться только гамета с 22+X, а вот у мужчин и та и другая с равной степенью вероятности. Соответственно, при слиянии сперматозоида с 22+X и яйцеклетки получается набор 44+XX (девочка), а при слиянии сперматозоида с 22+Y и яйцеклетки 44+XY (мальчик). Если кариотип каким-то образом нарушается, то это приводит к появлению генетических заболеваний: синдрома Дауна, синдрома кошачьего крика, синдрома Патау и т. д.
Количество пар хромосом у разных видов разное. У людей, как мы уже выяснили, 23 пары. У орангутанов 24 пары, у кошек 19 пар, у коз 30 пар, у индеек 40 пар, а у мух-дрозофил всего 4 пары. Очевидно, что от количества хромосом общий уровень организации животного не зависит. У растений ситуация похожая: например, кариотип риса 12 пар, редиса 9 пар и т. д.
От школьного курса можно сразу перейти к гибридам. Половое размножение живых существ начинается с мейоза, при котором из одной диплоидной (с двойным набором хромосом) зародышевой клетки образуются четыре гаплоидные (с одинарным набором хромосом). Именно в процессе мейоза из 44+XY получаются наборы 22+X и 22+Y. Мейоз имеет сложную многофазную структуру, и одной из первых его стадий является слияние свободно плавающих в ядре одинаковых хромосом в те самые пары (каковых у человека 23), называемое конъюгацией.
У многоклеточных организмов мейоз является частью более сложного процесса гаметогенеза, в ходе которого формируются специализированные половые клетки (гаметы), содержащие в себе одинарные наборы хромосом. При оплодотворении мужские и женские гаметы сливаются, образуя клетку с двойным набором хромосом.
Если оба партнёра относятся к одному виду, то после оплодотворения начинает развиваться особь того же вида, с тем же количеством хромосом в общем, цикл повторяется. Если же партнёры относятся к разным видам, гибрид получает свойства, отличные от свойств родителей. В частности, в ядрах его клеток содержатся хромосомы разных видов. И когда гибрид пытается размножиться, эти хромосомы не могут конъюгировать! Они попросту не сливаются в пары в первой стадии мейоза, и все дальнейшие процессы не запускаются, в результате гибрид оказывается неспособным к размножению, то есть стерильным.
Кёльрёйтер и его современники всего этого знать не могли в их времена попросту не существовало генетики. Они бились над решением вопроса, но им не хватало научной базы. Тем более что описанная схема это лишь один из факторов так называемой биологической изоляции, препятствующей межвидовому скрещиванию. Помимо стерильности, такими факторами нередко оказываются нежизнеспособность первого же поколения гибридов, их вырождение, у растений-гибридов пыльники могут не открываться, а пыльца не прорастать на рыльцах цветков другого растения. В общем, природа умеет защищаться от межвидовых связей.
Все гибриды, полученные Кёльрёйтером (я говорю о растительных гибридах), демонстрировали стерильность мужских особей. Гораздо позже, в 1922 году, британский биолог Джон Бёрдон Сандерсон Холдейн опубликовал знаменитую работу «Соотношение полов и стерильность одного пола у гибридных животных». В ней он сформулировал закон, ныне известный как «правило Холдейна»: «Если в потомстве межвидовых гибридов один из полов встречается реже, полностью отсутствует или стерилен, то этот пол является обычно гетерогаметным». Иначе говоря: чаще всего стерильны самцы гибридов. Правило имеет немало исключений, но в целом сохраняет своё значение и по сей день.
«Настоящая» генетика началась с великого австрийского биолога Грегора Иоганна Менделя, в середине XIX века сформулировавшего первые принципы передачи наследственных признаков. Самый знаменитый его доклад, который считается краеугольным камнем современной генетики, назывался «Опыты над растительными гибридами» и был прочитан в начале 1865 года перед Брюннским обществом естествоиспытателей. Новая наука развивалась, в начале XX века стала называться собственно «генетикой», потом открыли ДНК, разобрались в структуре хромосом но проблема стерильности межвидовых гибридов-растений оставалась непреодолимой. Какие бы прекрасные свойства ни имел гибрид, получить следующее его поколение, имеющее те же свойства, не получалось.