Так же как анатомические структуры не появляются ниоткуда, не появляются ниоткуда и новые гены. Они должны откуда-то браться, и новые гены обычно появляются за счет удвоения (дупликации) уже существующих, благодаря ошибкам в ходе репликации ДНК. При анализе генома становится ясно, что крупные участки ДНК удвоились по ходу эволюционного развития позвоночных от предковых форм. Так, например, у млекопитающих в ДНК имеют место четыре кластера гомеозисных генов, отвечающих за формирование органов и тканей (гены кластера Hox), а у ланцетников такой кластер только один. Ланцетник живой реликт древних предков позвоночных, и ему хватает для органогенеза одного набора гомеозисных генов. Развитие началось после того, как эти кластеры удвоились.
Минога
При появлении в геноме дубликата каких-то генов могут произойти несколько вещей. Иногда одна копия оказывается просто лишней, дегенерирует, а иногда и просто исчезает. Но существует и другая, более интересная возможность: один ген продолжает выполнять свою старую функцию, а дубликат может начать делать что-то новенькое. Правда, гены могут выполнять больше одной функции; например, они могут включаться в разные периоды развития организма и каждый раз меняют свою функцию. Поэтому третья возможная судьба это образование двух вариантов одного гена, которые тем не менее начинают исполнять разные функции, превращаясь таким образом в разные и независимые друг от друга гены. Оба они становятся необходимыми, и ни один из них не дегенерирует они просто развиваются в разных направлениях, беря на себя новые функции.
Когда у развивающегося эмбриона ланцетника возникает нервная трубка, на ней обособляется группа клеток, сильно напоминающих клетки нервного гребня эмбрионов позвоночных животных эти клетки находятся в подобных же местах и даже начинают мигрировать в процессе эмбрионального роста, но далеко они не уходят. Образуются эти клетки под влиянием сходных генов. Разница между этими клетками и клетками истинного нервного гребня обусловлена разными наборами удвоенных генов. Среди них есть ген, называемый FOXD3. В геноме ланцетника есть только одна копия FOXD, а у позвоночных таких копий четыре или пять. В ростральном конце нервной трубки ланцетника гены FOXD неактивны, но у миног и других позвоночных гены FOXD3 весьма активны в этой области. Судя по всему, этот ген «сообщает» нервному гребню, что он собой представляет, и направляет миграцию его клеток по организму.
Миллионы лет назад несколько активных удвоенных генов, взвалив на себя дополнительную роль в развитии эмбриона, привели к эволюции позвоночных, завершившейся возникновением нервного гребня и черепа. Сравнительно недавно эти же гены здорово постарались, чтобы из некоего эмбриона в результате получились именно вы. Клетки гребня нервного желобка отвечают на генетические сигналы, неотличимые от сигналов, которыми пользовались эмбрионы наших самых отдаленных предков первых позвоночных. У каждой из этих клеток из тела выпячивается отросток (псевдоподия), похожий на псевдоподии амебы, а затем клетка гребня медленно начинает ползти, разделяя на своем пути скопления клеток промежуточного слоя зародышевого диска.
Некоторые клетки мигрируют на совсем короткое расстояние, оставаясь вблизи спинного мозга, из них формируются нервные узлы ганглии чувствительных нервных клеток. Другие клетки уползают на шею, а затем на время становятся неактивными, ожидая момента, когда они превратятся в секретирующие гормоны клетки щитовидной железы. Третьи оказываются в месте образования будущего рта, где они участвуют в формировании зубов. Четвертые клетки нервного гребня оказываются в перегородке, разделяющей крупные сосуды грудной клетки. Есть клетки нервного гребня, трансформирующиеся в клетки мозгового слоя надпочечников, из которых впоследствии образуются клетки, секретирующие гормон адреналин. Некоторые клетки нервного гребня нагружаются жиром и становятся листками, обертывающими и изолирующими нервные волокна. Некоторые клетки совершают очень дальнее путешествие и оседают в коже, давая начало пигментным клеткам. Очень много клеток нервного гребня оказываются в голове, где откладываются в основании формирующегося черепа. Без нервного гребня у нас не было бы лица.
Возьмите любой приличный учебник эмбриологии, и вы найдете там длинный список всех тканей взрослого организма, образующихся из клеток нервного гребня. Правда, открытие и исследование маршрутов этих клеток представляло собой нелегкую как в научном, так и в техническом плане задачу.
В 1893 году Джулия Платт, посвятившая изучению эмбриологии девять лет сначала в Гарварде (США), а потом во Фрейбурге (Германия), опубликовала статью, в которой утверждала, что у эмбриона саламандры некоторые хрящи черепа формируются из клеток нервного гребня. В то время это было весьма смелое заявление, потому что считалось, что все хрящи и кости происходят из мезодермы, среднего слоя зародышевого диска. Все знали, что эктодерма (слой, из которого развивается нервный гребень) формирует эпидермис и нервные структуры. Предполагать что-то иное было просто немыслимо, так как подобные идеи представлялись смехотворными. О чем вообще говорит эта калифорнийская дама? В эмбриологической литературе поднялся шквал абсолютно неконструктивной критики. Один эмбриолог даже предположил, что мисс Платт, видимо, не слишком аккуратно готовила свои препараты. Правда, в конце концов выяснилось, что Джулия Платт была все же права, но это не спасло от краха ее научную карьеру, которая завершилась в 1898 году после окончания работы над докторской диссертацией.