Макс Тегмарк - Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта стр 34.

Шрифт
Фон

Успешное использование этой простой нейронной сети представляет нам еще один пример независимости от субстрата: нейронная сеть обладает колоссальной вычислительной силой, которая, вне всякого сомнения, не зависит от мелких подробностей в ее устройстве. В 1989 году Джордж Цибенко, Курт Хорник, Максвелл Стинчкомб и Халберт Уайт доказали нечто замечательное: простые нейронные сети вроде только что описанной универсальны в том смысле, что они могут вычислять любую функцию с произвольной точностью, просто приписывая соответствующие значения числам, которыми характеризуются силы синаптических связей. Другими словами, эволюция, вероятно, сделала наши биологические нейроны такими сложными не потому, что это было необходимо, а потому, что это было более эффективно, и потому, что эволюция, в отличие от инженеров-людей, не получает наград за простоту и понятность предлагаемых конструкций.


Рис. 2.10

Вещество может производить умножение, используя не гейты NAND, как на рис. 2.7, а нейроны. Для понимания ключевого момента здесь не требуется вникать в детали, достаточно только отдавать себе отчет, что нейроны (как биологические, так и искусственные) не только способны производить математические действия, но их для этого требуется значительно меньше, чем гейтов NAND. Вот еще факультативные детали для упертых фанатов математики: кружочками обозначено сложение, квадратики обозначают применение функции σ, а прямые отрезки  умножение на число, которое этот отрезок пересекает. На входе  вещественное число (слева) или бит (справа). Умножение становится сколь угодно точным при а  0 (слева) и при с   (справа). Левая сеть работает при любой функции σ(х), имеющей изгиб в нуле σ(0)  0), что можно доказать разложением функции σ(х) по формуле Тейлора. Для сети справа надо, чтобы функция σ(х) стремилась к нулю и к единице при очень малых и очень больших х соответственно, так чтобы соблюдалось условие uvw = 1, только когда u + v + w = 3. (Эти примеры взяты из статьи моего студента Генри Лина: https://arxiv.org/abs/1608.08225, проверена 18 мая 2018.) Комбинируя умножения и сложения, можно вычислять любые полиномы, с помощью которых, как известно, мы можем получить апроксимацию любой гладкой функции.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Впервые услышав об этом, я был озадачен: как что-то до такой степени простое может вычислить нечто произвольно сложное? Например, как вы сможете даже просто-напросто что-то перемножать, когда вам разрешено только вычислять взвешенные средние значения и применять одну фиксированную функцию? Если вам захочется проверить, как это работает, на рис. 2.10 показано, как всего пять нейронов могут перемножать два произвольных числа и как один нейрон может перемножить три бита.

Хотя вы можете доказать теоретическую возможность вычисления чего-либо произвольно большой нейронной сетью, ваше доказательство ничего не говорит о том, можно ли это сделать на практике, располагая сетью разумного размера. На самом деле, чем больше я об этом думал, тем больше меня удивляло, что нейронные сети и в самом деле так хорошо работали.

Предположим, что у вас есть черно-белые мегапиксельные фотографии, и вам их надо разложить в две стопки  например, отделив кошек от собак. Если каждый из миллиона пикселей может принимать одно из, скажем, 256 значений, то общее количество возможных изображений равно 2561000000, и для каждого из них мы хотим вычислить вероятность того, что на нем кошка. Это означает, что произвольная функция, которая устанавливает соответствие между фотографиями и вероятностями, определяется списком из 2561000000 позиций, то есть числом большим, чем атомов в нашей Вселенной (около 1078). Тем не менее нейронные сети всего лишь с тысячами или миллионами параметров каким-то образом справляются с такими классификациями довольно хорошо. Как успешные нейронные сети могут быть дешевыми в том смысле, что от них требуется так мало параметров? В конце концов, вы можете доказать, что нейронная сеть, достаточно маленькая для того, чтобы вписаться в нашу Вселенную, потерпит грандиозное фиаско в попытке аппроксимировать почти все функции, преуспев лишь в смехотворно крошечной части всех вычислительных задач, решения которых вы могли бы от нее ждать.

Я получил огромное удовольствие, разбираясь с этой и другими, связанными с ней, загадками вместе со студентом по имени Генри Лин. Среди разнообразных причин испытывать благодарность к своей судьбе  возможность сотрудничать с удивительными студентами, и Генри  один из них. Когда он впервые зашел в мой офис и спросил, хотел бы я поработать с ним, я подумал, что, скорее, мне надо было бы задавать такой вопрос: этот скромный, приветливый юноша с сияющими глазами из крошечного городка Шревепорт в штате Луизиана уже успел опубликовать восемь научных статей, получить премию Forbes 30-Under-30 и записать лекцию на канале TED, получившую более миллиона просмотров  и это всего-то в двадцать лет! Год спустя мы вместе написали статью, в которой пришли к удивительному заключению: вопрос, почему нейронные сети работают так хорошо, не может быть решен только методами математики, потому что значительная часть этого решения относится к физике.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3