Криптон, наряду с ксеноном и неоном, был обнаружен в 1898 году в ходе одного длительного эксперимента, который провели Уильям Рамзай и его коллега Моррис Уильям Траверс. После выделения аргона из воздуха Рамзай решил выяснить, какие ещё компоненты содержится в нём и вместе с Траверсом поставил эксперимент по постадийному испарению сжиженного воздуха. Сначала был получен жидкий воздух, который исследователи медленно испаряли, собирая отдельно каждый из компонентов. После того, как испарились лёгкие компоненты воздуха осталась фракция, спектральный анализ которой выдавал наличие в ней нового элемента. Дальнейшие эксперименты позволили разделить эту фракцию на два компонента, один из которых и получил название «криптон» (от греческого «криптос» тайный, скрытый). Вторым компонентом смеси был еще более тяжелый газ ксенон. До сих пор при промышленном получении криптона и ксенона первоначально проводят грубое фракционирование воздуха, получая криптон-ксеноновую смесь, которую затем подвергают более тонкому разделению. Из-за небольшого содержания криптона и ксенона в воздухе сразу получить из него чистые криптон и ксенон невозможно.
Как и другие инертные газы криптон не имеет ни цвета, ни вкуса, ни запаха. В одном кубическом метре воздуха содержится около кубического сантиметра криптона. В атмосфере Земли криптон образуется в результате радиоактивного распада тория и урана, протекающего в земной коре и не только. Любопытно, что поскольку большая часть ядерных реакторов, построенных человечеством, построена в северном полушарии Земли, концентрация криптона в атмосфере у северного полюса Земли примерно на 30 % выше, чем у южного. Криптон самый легкий из инертных газов, соединения которого могут существовать при положительной температуре. Дифторид криптона (KrF2), впервые полученный в 1960-е годы, разлагается при 20 °C. Это вещество настолько активно, что может окислить металлическое золото до степени окисления +5.
Низкая распространённость криптона (и его высокая стоимость) ограничивает его практическое применение. Его применяли для заполнения ламп накаливания для предотвращения преждевременного перегорания вольфрамовой спирали. Криптон также закачивали между стеклами двойного стеклопакета окон и рам для теплоизоляции (тяжёлый газ плохо проводит тепло), однако и для лампочек, и для теплоизоляции применение аргона более выгодно благодаря соотношению цена/качество.
Всё же некоторые свойства криптона уникальны. При ионизации газообразный криптон испускает яркий белый свет, что позволяет использовать содержащие криптон лампы для вспышек в высокоскоростной фотографии. Способность криптона образовывать устойчивые фториды дала возможность создания криптон-фторидных лазеров. С 1960 по 1983 год криптон, точнее его нуклид 86Kr, был очень важен для измерений и метрологии в то время в СИ метр определялся через длину волны оранжевой линии в спектре этого атома. Ну и, конечно, криптоном заполняют «неоновые» лампы (см. главу про неон). В отличие от газоразрядных ламп, заполненных неоном, лампы с криптоном дают бледно-розовое излучение.
37. Рубидий
История рубидия началась в 1859 году, когда Роберт Бунзен и Густав Кирхгофф скомбинировали в одном устройстве горелку Бунзена и призму Ньютона, расщепляющую пламя горелки на составляющие, создав устройство под названием «спектроскоп», и в аналитической химии началась новая эпоха.
Рубидий был одним из элементов, открытых непосредственно Бунзеном и Кирхгоффом при внесении в пламя горелки спектроскопа образца минерала лепидолита в спектре были обнаружены не соответствовавшие ни одному из известных элементов ярко-красные спектральные линии, что позволило дуэту немецких химиков предположить наличие в породе неизвестного элемента, после чего они выделили его из руды. Название рубидий происходит от латинского слова «rubidus» (интенсивно-красный, рубиново-красный), указывающего и на цвет линий в спектре, позволивших обнаружить рубидий и на то, какую окраску придают чистые образцы соединений этого элемента бесцветному пламени газовой горелки.
С одной стороны, рубидий нельзя назвать «химической экзотикой» это шестнадцатый по распространённости в земной коре химический элемент, его примерно столько же, сколько меди. С другой, в отличие от той же меди, рубидий не относится к минералообразующим элементам он не образует собственных месторождений, а встречается только как примесь в минералах щелочных металлов. Большую часть сырья для производства рубидия извлекают из лепидолита, в котором он был обнаружен, хотя основная причина разработки лепидолитовых руд добыча не рубидия, а лития. Металлический рубидий получают из его хлорида, восстанавливая металлическим кальцием при 750 °C и пониженном давлении.
Рубидий представляет собой один из щелочных металлов, населяющих первую группу Периодической системы. У всех щелочных металлов на внешнем (определяющем химические свойства) электронном уровне находится по одному электрону, который очень легко оторвать. Это делает щелочные металлы лёгкой добычей таких окислителей, как кислород, галогены или вода. Чем тяжелее щелочной металл, тем дальше единственный электрон внешнего слоя удалён от ядра, тем меньше электростатическое взаимодействие ядро атома электрон, и тем проще его оторвать, то есть рубидий гораздо активнее лития и натрия и заметно активнее калия. Так, если натрий и калий, контактируя с воздухом, просто медленно окисляются, образуя на своей поверхности плёнку, являющуюся смесью пероксидов, гидроксидов и карбонатов, от контакта с воздухом рубидий может самопроизвольно возгораться, горя ярко-красным пламенем. Хранить металлический рубидий еще сложнее, чем натрий или калий.