В наши дни галлий применяется не в столь многих областях временами металлический галлий и его сплавы применяют как материал для легкоплавких предохранителей для электроприборов. Галлий образует несколько сплавов, жидких при комнатной температуре (в общем случае они называются «галламы», один из них сплав индия, галлия и олова затвердевает только при 19 °C). Жидкие при комнатной температуре сплавы галлия уже много где заменили более опасную и токсичную ртуть например, в качестве жидких затворов. Несколько лет назад арсенид галлия (Ga3As2) стали изучать как полупроводниковый материал перспективная замена кремнию для изготовления транзисторов и светоизлучающих диодов. Солнечные батареи из арсенида галлия эффективнее кремниевых и уже применяются для питания космических аппаратов.
Галлий не имеет биологического значения, однако применяется в медицине его соединения могут использоваться для лечения некоторых состояний онкологических больных и для быстрой остановки кровотечения из глубоких ран. Его производные ускоряют заживление ран и работают как бактерициды.
32. Германий
Германий тот элемент, название которого, хотя и дает аллюзию на «немецкий порядок», на самом деле крайне беспорядочный элемент, который можно было охарактеризовать по-французски сomme ci, comme ça (ни то ни сё). Соседи сверху германия по Периодической системе неметаллы углерод и кремний, а снизу металлические олово и свинец. В итоге германий отличается металлическим блеском, но проводимость у него как у полупроводника. Раньше элементы, которые нельзя было однозначно отнести ни к металлам, ни к неметаллам выделяли в отдельный класс металлоиды, однако сейчас, вероятно, чтобы не множить сущностей сверх меры, из российской классификации элементов этот термин исчез и германий стали относить к неметаллам.
Германий последний член канонической тройки элементов, свойства которых были предсказаны Менделеевым (на самом деле Дмитрий Иванович предсказывал свойства большего количества элементов, но где-то, как например с экамарганцем-технецием, Менделеев, не имея представления о самопроизвольном распаде атомных ядер, естественно не мог предвидеть, что этого короткоживущего элемента в земной коре просто нет). Свойства германия были предсказаны точнее всего плотность, серый цвет высокая температура плавления, атомный вес и свойства соединений. Правда, для германия от предсказания до подтверждения свойств прошёл самый большой срок.
В 1886 году немецкий химик Клеменс Винклер выделил новый элемент из минерала аргиродита, обнаруженного недалеко от его родного саксонского города Фрайбурга. Первоначально Винклер планировал назвать новый элемент «нептунием», но за девять лет до его открытия, в 1877 году химик Германн выделил из минерала танталита то, что он ошибочно посчитал новым элементом и назвал его нептунием. Ко времени открытия Винклера открытие Германна было опровергнуто в танталите не было нового элемента. Считая, что давать элементу ошибочное название неправильно, Винклер назвал новый элемент в честь латинского названия своей страны («правильный» нептуний появится в Периодической системе в 1940 году), взяв за основу её латинское название. В 1870-е годы Германия была новинкой на политической карте мира она появилась в декабре 1870 года, сменив собой организованный в 1866 году Северогерманский союз.
Пятьдесят лет германий оставался лишь просто заполненной клеткой в Периодической системе ну и живым подтверждением Периодического закона его промежуточное состояние между металлами и неметаллами не давало возможности придумать, для чего он может пригодиться. Развитие электроники и связанных с ней было технологий показало, что ценность германия как раз состоит в этой двойственности. Будучи полупроводником, материалом, электропроводность которого меньше, чем у металла, но больше, чем у диэлектрика, электропроводность, которую можно регулировать воздействием извне электрическим полем, облучением, введением легирующих добавок всё это позволило найти германию область, в которой он смог проявить себя.
Для начала германий стал материалом, который смог заменить один из ключевых электронных приборов, служащих для выпрямления электрического тока диод. До эры полупроводниковой электроники диод представлял собой вакуумную двухэлектродную электронную лампу, катод которой нагревался до температур, при которых начинал испускать электроны. При подаче на анод отрицательного напряжения все электроны, оторвавшиеся от катода, возвращались на электрод, и электрический ток не протекал через устройство (такое состояние диода называют «запертым»), при подаче на анод напряжения более положительного, чем у катода электроны начинают двигаться направленно к аноду, формируя электрический ток. Диод работает как электронный «ниппель» позволяет электронам двигаться только в одном направлении.
Пятьдесят лет германий оставался лишь просто заполненной клеткой в Периодической системе ну и живым подтверждением Периодического закона его промежуточное состояние между металлами и неметаллами не давало возможности придумать, для чего он может пригодиться. Развитие электроники и связанных с ней было технологий показало, что ценность германия как раз состоит в этой двойственности. Будучи полупроводником, материалом, электропроводность которого меньше, чем у металла, но больше, чем у диэлектрика, электропроводность, которую можно регулировать воздействием извне электрическим полем, облучением, введением легирующих добавок всё это позволило найти германию область, в которой он смог проявить себя.