Адаптивная система (Adaptive system) это система, которая автоматически изменяет данные алгоритма своего функционирования и (иногда) свою структуру для поддержания или достижения оптимального состояния при изменении внешних условий.
Адаптивная система нейро-нечеткого вывода (Adaptive neuro fuzzy inference system) (ANFIS) (также адаптивная система нечеткого вывода на основе сети) это разновидность искусственной нейронной сети, основанная на системе нечеткого вывода Такаги-Сугено. Методика была разработана в начале 1990-х годов. Поскольку она объединяет как нейронные сети, так и принципы нечеткой логики, то может использовать одновременно все имеющиеся преимущества в одной структуре. Его система вывода соответствует набору нечетких правил ЕСЛИ-ТО, которые имеют возможность обучения для аппроксимации нелинейных функций. Следовательно, ANFIS считается универсальной оценочной функцией. Для более эффективного и оптимального использования ANFIS можно использовать наилучшие параметры, полученные с помощью генетического алгоритма.
Адаптивный алгоритм (Adaptive algorithm) это алгоритм, который пытается выдать лучшие результаты путём постоянной подстройки под входные данные. Такие алгоритмы применяются при сжатии без потерь [13]. Классическим вариантом можно считать Алгоритм Хаффмана.
Адаптивный градиентный алгоритм (Adaptive Gradient Algorithm) (AdaGrad) это cложный алгоритм градиентного спуска, который перемасштабирует градиент отдельно на каждом параметре, эффективно присваивая каждому параметру независимый коэффициент обучения.
Аддитивные технологии (Additive technologies) это технологии послойного создания трехмерных объектов на основе их цифровых моделей («двойников»), позволяющие изготавливать изделия сложных геометрических форм и профилей.
Айзек Азимов (Айзек Азимов (19201992) -автор научной фантастики, сформулировал три закона робототехники, которые продолжают оказывать влияние на исследователей в области робототехники и искусственного интеллекта (ИИ).
Активное обучение/Стратегия активного обучения (Активное обучение/Стратегия активного обучения) это особый способ полууправляемого машинного обучения, в котором обучающий агент может в интерактивном режиме запрашивать оракула (обычно человека-аннотатора) для получения меток в новых точках данных. Подход к такому обучению основывается на самостоятельном выборе алгоритма некоторых данных из массы тех, на которых он учится. Активное обучение особенно ценно, когда помеченных примеров мало или их получение слишком затратно. Вместо слепого поиска разнообразных помеченных примеров алгоритм активного обучения выборочно ищет конкретный набор примеров, необходимых для обучения.
Алгоритм (Algorithm) это точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин «алгоритм» происходит от имени узбекского математика Мусы аль-Хорезми, который еще в 9 веке (ок. 820 г. н.э.) предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Также, алгоритм это набор правил или инструкций, данных ИИ, нейронной сети или другим машинам, чтобы помочь им учиться самостоятельно; классификация, кластеризация, рекомендация и регрессия четыре самых популярных типа
АлгоритмАлгоритм (Алгоритм это алгоритм оценки качества текста, который был автоматически переведен с одного естественного языка на другой. Качество считается соответствием между переводом машины и человека: «чем ближе машинный перевод к профессиональному человеческому переводу, тем лучше» это основная идея BLEU.
Алгоритм Q-обучения (Q-learning) это алгоритм обучения, основанный на ценностях. Алгоритмы на основе значений обновляют функцию значений на основе уравнения (в частности, уравнения Беллмана). В то время как другой тип, основанный на политике, оценивает функцию ценности с помощью жадной политики, полученной из последнего улучшения политики. Табличное Q-обучение (при обучении с подкреплением) представляет собой реализацию Q-обучения с использованием таблицы для хранения Q-функций для каждой комбинации состояния и действия. «Q» в Q-learning означает качество. Качество здесь показывает, насколько полезно данное действие для получения вознаграждения в будущем.
Алгоритм дерева соединений (также алгоритм Хьюгина) (Алгоритм дерева соединений (также алгоритм Хьюгина) это метод, используемый в машинном обучении для извлечения маргинализации в общих графах. Граф называется деревом, потому что он разветвляется на разные разделы данных; узлы переменных являются ветвями.
Алгоритм любого времени (Anytime algorithm) это алгоритм, который может дать частичный ответ, качество которого зависит от объема вычислений, которые он смог выполнить. Ответ, генерируемый алгоритмами anytime, является приближенным к правильному. Большинство алгоритмов выполняются до конца: они дают единственный ответ после выполнения некоторого фиксированного объема вычислений. Однако в некоторых случаях пользователь может захотеть завершить алгоритм до его завершения. Эта особенность алгоритмов anytime моделируется такой теоретической конструкцией, как предельная машина Тьюринга (Бургин, 1992; 2005).