Александр Николаевич Власкин - Глоссариум по искусственному интеллекту: 2500 терминов стр 11.

Шрифт
Фон

Библеоклазмы  это люди паразиты, в силу своей ограниченности воспитания и мировоззрения, образования, а особенно менталитета, не способные создавать и созидать, которые стремятся уничтожить все то, что создано не ими, что задевает их самолюбие, а именно книги и результаты интеллектуальной деятельности других людей.


Библиотека Keras (Библиотека Keras  это библиотека Python, используемая для глубокого обучения и создания искусственных нейронных сетей. Выпущенный в 2015 году, Keras предназначен для быстрого экспериментирования с глубокими нейронными сетями. Keras предлагает несколько инструментов, которые упрощают работу с изображениями и текстовыми данными. Помимо стандартных нейронных сетей, Keras также поддерживает сверточные и рекуррентные нейронные сети. В качестве бэкэнда Keras обычно использует TensorFlow, Microsoft Cognitive toolkit или Theano. Он удобен для пользователя и требует минимального кода для выполнения функций и команд. Keras имеет модульную структуру и имеет несколько методов предварительной обработки данных. Keras также предлагает методы evluate () и predict_classes () для тестирования и оценки моделей. Github и Slack организуют форумы сообщества для Keras.

БЕТАБЕТАБЕТА это термин, который относится к этапу разработки онлайн-сервиса, на котором сервис объединяется с точки зрения функциональности, но требуется подлинный пользовательский опыт, прежде чем сервис можно будет завершить ориентированным на пользователя способом. При разработке онлайн-сервиса цель бета-фазы состоит в том, чтобы распознать как проблемы программирования, так и процедуры, повышающие удобство использования. Бета-фаза особенно часто используется в связи с онлайн-сервисами и может быть либо бесплатной (открытая бета-версия), либо ограниченной для определенной целевой группы (закрытая бета-версия).


Библеоклазмы  это люди паразиты, в силу своей ограниченности воспитания и мировоззрения, образования, а особенно менталитета, не способные создавать и созидать, которые стремятся уничтожить все то, что создано не ими, что задевает их самолюбие, а именно книги и результаты интеллектуальной деятельности других людей.


Библиотека Keras (Библиотека Keras  это библиотека Python, используемая для глубокого обучения и создания искусственных нейронных сетей. Выпущенный в 2015 году, Keras предназначен для быстрого экспериментирования с глубокими нейронными сетями. Keras предлагает несколько инструментов, которые упрощают работу с изображениями и текстовыми данными. Помимо стандартных нейронных сетей, Keras также поддерживает сверточные и рекуррентные нейронные сети. В качестве бэкэнда Keras обычно использует TensorFlow, Microsoft Cognitive toolkit или Theano. Он удобен для пользователя и требует минимального кода для выполнения функций и команд. Keras имеет модульную структуру и имеет несколько методов предварительной обработки данных. Keras также предлагает методы evluate () и predict_classes () для тестирования и оценки моделей. Github и Slack организуют форумы сообщества для Keras.


Библиотека Matplotlib (Библиотека Matplotlib  это комплексная, популярная библиотека Python с открытым исходным кодом для создания визуализаций «качества публикации». Визуализации могут быть статическими, анимированными или интерактивными. Он был эмулирован из MATLAB и, таким образом, содержит глобальные стили, очень похожие на MATLAB, включая иерархию объектов.


Библиотека Numpy (Библиотека Numpy  это библиотека Python, представленная в 2006 году для поддержки многомерных массивов и матриц. Библиотека также позволяет программистам выполнять высокоуровневые математические вычисления с массивами и матрицами. Можно сказать, что это объединение своих предшественников  The Numeric и Numarray. NumPy является неотъемлемой частью Python и по существу предоставляет программе математические функции типа MATLAB. По сравнению с обычными списками Python, он занимает меньше памяти, удобен в использовании и имеет более быструю обработку. При интеграции с другими библиотеками, такими как SciPy и / или Matplotlib, его можно эффективно использовать для целей анализа данных и анализа данных [19].


Библиотека Pytorch & Torch (Библиотека Pytorch & Torch  это библиотека машинного обучения, которая в основном используется для приложений обработки естественного языка и компьютерного зрения. Разработанная исследовательской лабораторией искусственного интеллекта и выпущенная в сентябре 2016 года, это библиотека с открытым исходным кодом, основанная на библиотеке Torch для научных вычислений и машинного обучения. PyTorch предоставляет операции с объектом n-мерного массива, аналогичные NumPy, однако, кроме того, он предлагает более быстрые вычисления за счет интеграции с графическим процессором. PyTorch автоматически различает построение и обучение нейронных сетей. PyTorch  это внесла свой вклад в разработку нескольких программ глубокого обучения  Tesla Autopilot, Ubers Pyro, PyTorch Lighten и т. д.


Библиотека Scikit-learn (Библиотека Scikit-learn  это простая в освоении библиотека Python с открытым исходным кодом для машинного обучения, построенная на NumPy, SciPy и matplotlib. Его можно использовать для классификации данных, регрессии, кластеризации, уменьшения размерности, выбора модели и предварительной обработки.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3