Для построения разных (сложных и простых) таблиц целесообразно прибегать к использованию: профессиональных статистических пакетов, например таких, IBM SPSS Statistics; программы MS Excel. Благодаря пакетам и программам можно при минимуме временных затрат строить таблицы, осуществлять обработку данных, составлять отчеты по маркетинговым исследованиям.
Метод выборочный
В качестве выборочного метода в статистике принято понимание метода исследования общих свойств всей совокупности (генеральной совокупности или же выборки) каких-то объектов на базе анализа свойств только части данных объектов (выборочной совокупности). Применение этого метода может быть целесообразно из-за: большой обширности объекта исследования (к примеру, когда изучаются потребительские предпочтения на рынке); необходимости в сборе маркетинговой первичной информации в рамках «пилотных» исследований.
Выборочное обследование предусматривает, что нужно добиваться минимальности объема выборки при максимуме точности описания генеральной совокупности на базе выборочных данных. Поэтому выборке положено отличаться репрезентативностью (представительностью), чтобы объективно отражать свойства, имманентные генеральной совокупности.
При реализации выборочных обследований следует обеспечивать: количественную характеристику выборки либо определять минимальное количество объема выборки (наблюдений) для осуществления исследования; качественную характеристику выборки либо способов и методов, посредством которых происходит формирование совокупности выборочного вида.
Достижение точности итогов выборочных обследований возможно на основе прибегания к применению отличающихся сложностью методов, содействующих формирования выборок (это кластерный отбор, задание расслоения, использование отбора вероятностно-пропорционального вида, простой случайный либо неслучайный отбор, повторный либо бесповторный отбор).
Значение показателя минимального объема выборки обусловливается многими параметрами, принадлежащими оцениваемому показателю либо системе показателей (способ и методы формирования выборки, заданная надежность результатов, вариация исследуемых данных, максимально допустимая ошибка в оценивании показателей). Данный показатель определяют на базе статистических методов либо экспертно.
II Применение в маркетинге Корреляционного и регрессионного анализа
2.1 Анализ корреляционный. Регрессионный анализ линейный и нелинейный
Анализ корреляционный
Фото из источника в списке литературы [3]
В качестве корреляционного анализа принято понимание статистического метода анализа взаимосвязи между случайными переменными-величинами в количестве двух и более. Случайные переменные-величины это свойства изучаемых объектов наблюдения, являющиеся измеряемыми.
При проведении корреляционного анализа предусматривается исчисление коэффициентов корреляции, принимающих обычно либо отрицательные, либо положительные значения. По знаку коэффициента судят о направлении имеющейся связи, а по абсолютному значению силу имеющейся связи.
При проведении корреляционного анализа предусматривается исчисление коэффициентов корреляции, принимающих обычно либо отрицательные, либо положительные значения. По знаку коэффициента судят о направлении имеющейся связи, а по абсолютному значению силу имеющейся связи.
Для оценивания направления связи между анализируемыми переменными, измерение которых производилось в шкале порядковой, прибегают к использованию ранговых непараметрических коэффициентов корреляции: коэффициентов ранговой корреляции Кендалла и коэффициента корреляции Спирмена. Применение нередко находит и исчисление коэффициентов: Фехнера (корреляция знаков), конкордации (множественная ранговая корреляция). Между переменными дихотомическими также измеряют связи посредством соответствующих метрик.
Для исчисления коэффициентов корреляции применяют способ расчета, зависящий от шкалы измерения тех из переменных, взаимосвязь между которыми исследуют.
Если переменные измерены в шкале количественного типа (шкала отношений либо шкала интервальная), то обеспечивается расчет ковариации или корреляционного момента, а на его базе исчисление линейного коэффициента корреляции (коэффициента Пирсона).
Исчисление коэффициентов корреляции относительно не трудное, к тому же их легко интерпретировать. Применять их могут даже люди специально не подготовленные. Однако, у рассматриваемого вида анализа корреляционного имеется собственная своя специфика и методика. Необходимо соблюдать предпосылки исчисления каждого из коэффициентов корреляции, а также проверять их значимость, которая базируется на принципе необходимости проверки статистических гипотез, нужно также правильно строить интервальные оценки коэффициентов. Надо также помнить, что иногда исследователям приходится сталкиваться с «ложными корреляциями», приводящими к ложным (обманчивым) выводам. Поэтому нужно практиковать расчет не только общих коэффициентов корреляции, но и частных.
На базе корреляционного анализа невозможно определение формы связи между переменными и предсказание значения одной зависимой переменной по одной либо ряду переменных независимых. Если говорить о переменных количественных, то для решения данной задачи можно прибегнуть к применению линейного регрессионного анализа.