Любовь Лашкевич - Записки маркетолога. Чертеж вашего бизнеса стр 2.

Шрифт
Фон

Как показано на рис. 1, данные, полученные с использованием разных методов, пересекаются, но мы не знаем, в какой плоскости, под каким углом, и в каком объеме. Таким образом, при смешивании в один анализ данных из разных методик или методов, мы из плоскости математики и статистики уходим в плоскость интуитивных гаданий.



В компании Z провели замеры стандартов обслуживания клиентов и получили следующие интересные данные. Консультантам компании был вменен стандарт «Выявление потребности клиентов». Но клиенты в эту компанию приходят с конкретным запросом и не знают о том, что консультант должен провести с ними определенную работу.

И что мы получаем в результате по данному стандарту обслуживания? «Тайные покупатели» поставили по нему очень низкие оценки, так как им были известны стандарты, принятые в компании. А клиенты компании Z во время опроса поставили высокие оценки, думая, что речь идет об уровне ответа консультанта на заданный ими вопрос.

Если мы эти данные, полученные с помощью разных методик, смешаем в одну кучу, то получим некую непонятную величину, никак не отражающую разницу между восприятием стандартов обслуживания клиентом, и самими стандартами, принятыми в компании. Ведь вполне возможно, что, например, стандарт «Инициативность консультанта» не предусматривает выявления потребностей клиентов, так как клиент приходит с конкретной задачей, и лучше сразу направить силы и время консультантов на процессы, более важные для клиента.

Порой руководство компаний перегружает сотрудников процессами, которые не важны для клиентов, а на значимые процессы у консультантов не остается времени и сил.

Принцип однородности должен соблюдаться, в том числе, и когда вы проводите кабинетные исследования. Когда вы планируете «пройтись» по конкурентам, изучая их работу. В книге принцип однородности исследования будет встречаться часто, и вы увидите примеры, где мы подробно разберем важность соблюдения этого принципа.

Выборка при опросах. «Истина где-то рядом»

Понятие репрезентативности известно уже давно. А калькулятор расчета ошибки выборки доступен любому пользователю Интернета. Тем не менее, часто маркетологи очень вольно обращаются с понятием репрезентативности. Выборку порой назначают (не рассчитывают, а именно назначают) из собственного внутреннего ощущения. Понятие внутренних ощущений в научном труде, (а исследование  это научный труд), сродни вождению автомобиля в нетрезвом виде. Исследователь, который вольно обращается с базовыми принципами,  потенциальный убийца бизнеса. Ведь на основе полученных данных будут построены стратегия и дальнейшие шаги развития компании. И вольное обращение с базовыми принципами построения исследования ведет к весьма вредным для бизнеса последствиям, так как исследование основано на субъективных данных, полученных на основе ощущений одного человека.

Рассуждения о том, стоит ли правильно считать выборку,  то же самое, что обсуждать правила математических вычислений на уровне «нравится  не нравится».

Рассмотрим пример из практики. Специалисты отдела маркетинга компании Z (компания работает в массовом сегменте) решили провести исследование в регионе с населением 2,5 млн человек и посчитали, что 350 респондентов достаточно для получения результатов.

Ошибка выборки в данном случае составит ± 5,24% при расчетах в натуральном выражении. В случае расчета в долях, процентах, ошибка выборки рассчитывается в процентных пунктах (п. п.)

Максимальное отклонение от истины в размере 5,24% возможно только в том случае, если результат исследований находится в точке «В», а истина находится в точке «А» или «С» (рис. 2).

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Ошибка выборки в данном случае составит ± 5,24% при расчетах в натуральном выражении. В случае расчета в долях, процентах, ошибка выборки рассчитывается в процентных пунктах (п. п.)

Максимальное отклонение от истины в размере 5,24% возможно только в том случае, если результат исследований находится в точке «В», а истина находится в точке «А» или «С» (рис. 2).

Например, мы вычислили, что доля использования антифриза владельцами автомобилей старше 1997 г. в. составляет 10,6%  это результат. Значит истина находится в диапазоне от 5,36% до 15,84%. Вычисление диапазона при получении результата в процентах:

Нижнее значение диапазона: 10,6%  5,24 п. п. = 5,36%

Верхнее значение диапазона: 10,6% +5,24 п. п. = 15,84%

При расчетах в натуральном выражении, например, результат равен 100 автовладельцам, истина находится в диапазоне от 95 до 105 автовладельцев. Расчет:

Нижнее значение диапазона:

100 автовладельцев  5,24% = 95 автовладельцев.

Верхнее значение диапазона:

100 автовладельцев +5,24% = 105 автовладельцев.

Большое это расхождение или маленькое? Возможно ли при таком отклонении делать объективные выводы для эффективной работы бизнеса?



В целом, ошибка допустимая. И с полученными данными можно работать. Но! Дальше  интереснее. Сотрудники маркетингового отдела компании Z принимают следующее решение. Так как исследование по региону происходило в определенных населенных пунктах, то почему бы не провести аналитику полученных данных по каждому населенному пункту?

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3

Популярные книги автора