Роман Владимирович Зыков - Роман с Data Science. Как монетизировать большие данные стр 19.

Шрифт
Фон

В одной из компаний, где я работал, была собрана команда для реализации проекта. Проект не аналитический, в теории он выглядел замечательно. К тому же командой руководил человек, который преподавал проектирование таких систем чуть ли не в топовом университете. Для технической реализации были выбраны самые «современные» технологии. В итоге три или четыре разработчика писали эту систему целый год. В попытке запустить ее потратили целые сутки Не завелось, и всю систему выбросили на свалку. То же самое может случиться и с аналитикой. Теория очень сильно отличается от практики, тем более в нашем быстро меняющемся мире.

Риск уменьшится, если привлечь очень опытного аналитика, который не раз лично реализовывал подобные проекты. На вашем проекте он будет выступать в качестве независимого советника или даже арбитра. Это нужно, чтобы, с одной стороны, «приземлить» заказчика, с другой ограничить подрядчика. Я считаю, что проект на старте лучше сильно урезать по «хотелкам», чтобы получить на выходе работающую версию как можно быстрее. На то есть несколько причин. Во-первых, после того как вы, заказчик, вживую поработаете с ней, вам гораздо легче будет сформулировать, что вы действительно хотите. Это тяжело делать абстрактно на бумаге, конструируя сферического коня в вакууме. Вторая причина драйв, лично для меня это очень важно. Когда время течет медленно, у команды, да и у заказчиков, постепенно угасает интерес. И на выходе мы уже получаем вымученный проект, которым уже не так сильно хочется заниматься.

Если нет возможности найти советника попытайтесь хоть немного разобраться в вопросе самостоятельно, почитайте книгу, посмотрите видеозаписи конференций. Иначе велика вероятность, что проект просто не взлетит. А если и взлетит, то будет потрачено много времени и денег.

Хорошо, если можно отдать на аутсорс технологическую часть, но можно ли это сделать с аналитикой? Общий ответ нет. Сторонние аналитики никогда не будут обладать всей полнотой бизнес-контекста. С другой стороны, аутсорс аналитики какого-то направления вполне возможен. Например, рекламного.

Еще один вариант аутсорса отдать какую-то часть проекта целиком: вы отдаете данные, а на выходе получаете готовый продукт. Пример такого сотрудничества компания Retail Rocket. Начали мы бизнес с товарных рекомендаций. Интернет-магазины отдавали нам данные и товарную базу, на выходе они получали готовые рекомендации. Лично у меня идея такого бизнеса зародилась во время работы в компании Wikimart.ru. Я сделал рекомендации для сайта компании и подумал: почему бы не запустить тиражируемое решение. Это бы сняло необходимость интернет-магазину нанимать инженеров машинного обучения и изобретать велосипед. Результат получался гораздо быстрее, буквально за неделю. Среднее качество рекомендаций нашего сервиса гораздо лучше внутренней разработки. Если бы меня наняли сейчас в интернет-магазин, то, скорее всего, я бы привлек внешний сервис рекомендаций вместо того, чтобы делать собственную разработку.

Немного расскажу о своем личном опыте работы на аутсорсе. В 2009 году я ушел из Ozon.ru. В то время у меня был достаточно популярный блог по аналитике KPIs.ru, созданный за пару лет до этого. И оттуда ко мне стали приходить запросы на консалтинг по аналитике из самых разных сфер: разработчики игр, e-commerce, венчурный фонд и т. д. Потихоньку я стал наращивать темп консультаций, одновременно работая на три компании. Первой я помог выбрать нужную технологию и нанять людей в команду, проводил собеседования. Второй помогал растить стартапы. В третьей компании я поработал руками, подняв аналитическую систему. Мне этот опыт много дал прежде всего я помогал компаниям, не отвлекаясь на корпоративные детали и бюрократию, как было бы, работай я в штате. Ну а компаниям моя работа позволила осуществлять быстрый старт проектов. Кстати, в третьей компании я в результате остался работать (это был Wikimart.ru): ее основатель предложил мне возглавить отдел аналитики и я согласился, потому что в тот момент хотел быть ближе к данным и работать руками. На этом тогда закончился мой аутсорс.

Наем и увольнения

Допустим, технологии выбраны, задачи понятны, есть информация по имеющимся данным. Возможно, даже «поднята» аналитическая система бери и пользуйся. Поговорим о найме сотрудников.

Я уже описывал роли в прошлой главе. Их много, в идеале одна функция один человек. На начальном этапе обычно происходит совмещение ролей: аналитик может и данные выгрузить, и ML-модель собрать. Я никогда не нанимаю лишних людей и придерживаюсь теории бережливого стартапа. Лучше последовательно нанимать и расширять отдел, чем бездумно нанять много людей, а потом не понимать, что с ними делать.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3