Очевидно, что в классическом поворотном движении при неизменной угловой скорости часть поддерживающей вращение силы компенсирует истинную силу Кориолиса-Кеплера. При этом исходная линейная скорость на новом радиусе остаётся неизменной. Эта равновесная часть поддерживающей силы не причастна к ускорению Кориолиса. Дальнейшее восстановление угловой скорости до исходного значения с ускорением Кориолиса осуществляется только за счёт оставшейся части поддерживающей силы. Напомним, что за силу Кориолиса в классической физике принимается реакция на поддерживающую силу.
Осталось выяснить количественное соотношение равновесной статической и неуравновешенной динамической части поддерживающей силы.
Из классической версии явления Кориолиса известно, что полная поддерживающая сила равна (Fпк = 2 * m * ω * Vr). Это вдвое больше истинной силы Кориолиса-Кеплера, равной (Fик = m * ω * Vr). Следовательно, оставшаяся после компенсации истинной силы Кориолиса-Кеплера динамическая часть поддерживающей силы и сообщаемое ей реальное тангенциальное ускорение Кориолиса, равны ровно половине поддерживающей силы. Соответственно реакция на эту динамическую часть поддерживающей силы, т.е. реальная сила Кориолиса, также вдвое меньше классической силы Кориолиса.
Это непосредственно следует из физического смысла второго закона Кеплера и чисто аналитически. Поскольку в отсутствие поддерживающей силы угловая скорость обратно пропорциональна квадрату радиуса, а геометрическое масштабирование угловой и линейной скорости через масштабный коэффициент-радиус обратно пропорционально только первой степени радиуса, то на долю статической и динамической части поддерживающей силы приходится ровно по половине её величины.
Если путём компенсации истинной силы Кориолиса-Кеплера поддерживать на неизменном уровне только линейную скорость переносного вращения, то ускорение Кориолиса будет равно нулю. Возникающее при этом движение по спирали осуществляется только с центростремительным ускорением, что на первый взгляд выглядит парадоксальным. Однако это не равномерное вращательное движение. Его переменное центростремительное ускорение регулируется радиальной силой, периодически изменяющей связь с центром вращения.
При этом геометрический центр кривизны непрерывно изменяет своё положение в пространстве за счёт свободного движения тела по касательной в момент ослабления связи. При этом изменения по направлению радиальной скорости, как такового не происходит. Изменяет направление касательная скорость. А парадоксальность такого псевдо вращательного движения состоит в том, что в классической физике за центростремительное ускорение неоправданно принимается особый вид линейного однородного ускорения вместо разновеликих и разнонаправленных ускорений по изменению направления на самом деле.
В классической физике истинная сила Кориолиса-Кеплера отсутствует. Поэтому в расчёте ускорения Кориолиса она ошибочно исходит из приращения движения, соответствующего полной поддерживающей силе, что приводит к удвоению ускорения Кориолиса. Это требует качественной и соответственно количественной коррекции классической версии явления Кориолиса и анализа причин, по которым классическое дифференцирование не видит этой ошибки.
Начнём с прямолинейного движения, в котором ошибки не столь критичны и ограничиваются лишь некоторым некритичным для истины абстрагированием от реальности. Итак, на рисунке (4.1.1.1) показаны два отдельных участка прямолинейного равноускоренного движения с координатами (18 м, 21 м) и (21м, 26 м) с секундным интервалом внутри каждой пары координат.
Рис. 4.1.1.1
В физике есть известная всем школьная формула пути для равноускоренного движения (S = V0 + a * t2 / 2), из которой следует, что ускорение равно (a = 2 * (S V0 * t) / t2). Как видно, пресловутая двойка не является эксклюзивной исключительно только для явления Кориолиса. Она имеет принципиальное значение для определения ускорения через приращение пути любого равноускоренного движения, т.к. средняя скорость, которая и определяет пройденное расстояние, вдвое меньше мгновенной скорости, достигнутой за счёт ускорения за то же самое время. Однако при определении ускорения через дифференцирование координат эту формулу не используют, т.к. для неё недостаточно одних только координат, нужна ещё и начальная скорость.