Александр Алексеевич Астахов - Физика. Порядок вещей, или Осознание знаний. Книга 2 стр 23.

Шрифт
Фон

Δωрад = ω * Vr *Δt / rрад

После подстановки найденного приращения угловой скорости (Δωрад) в выражение (4.2.3) и сокращений получим физическое значение динамической силы Кориолиса:

Fпд = m * rрад * ω * Vr * Δt / rрад* Δt = m * Vr * ω (4.2.8)

Как видно из полученного выражения, динамическая поддерживающая сила (4.2.8) сообщает геометрическое, т.е. реальное приращение классическому поворотному движению с неизменной угловой скоростью вдвое меньшее, чем классическое ускорение Кориолиса.

Теперь найдём физическое значение статической составляющей поддерживающей силы, которая компенсирует истинную силу Кориолиса в диапазоне изменения линейной скорости от (Vли = ω2 * r2) до (Vлн = ω1 * r1). Для определения граничных угловых скоростей приведённого вращательного движения для статической составляющей силы Кориолиса разделим граничные линейные скорости (Vли = ω2* r2) и (Vлн = ω1* r1), на радиус образцового вращательного движения.

ω1рад = ω2 * r2 / rрад

ω2рад = ω1 * r1 / rрад

Индекс статической составляющей (с) для простоты опущен.

Приращение угловых скоростей образцового вращательного движения равно:

Δωрад = ω1 * r1 / rрад  ω2 * r2 / rрад

Подставив в (4.2.3) приращение угловой скорости поворотного движения для статической силы Кориолиса, пересчитанное к образцовому радиану, получим выражение для статической силы Кориолиса:

Fк = m * rрад * (ω1 * r1 / rрад ω2 * r1 / rрад) / Δt (4.2.9)

Теперь приведём выражение (4.2.9) к традиционному виду. Для этого преобразуем приращение угловой скорости с учетом закона сохранения момента импульса или второго закона Кеплера (ω2 = ω1 * r12 / r22) следующим образом:

Δωрад = ω1 * r1 / rрад ω2 * r2 / rрад =

= ω1 * r1 / rрад  r2 * ω1 * r12 / (r22 * rрад) = ω1 * r1 / rрад  ω1 * r12 / (r2 * rрад) =

= ω1 * (r1 * r2  r12) / (r2 * rрад) = ω1 * r1 * (r2  r1) / (r2* rрад)

Но:

r2  r1 = Δr = Vr * Δt

Тогда

Δωрад = ω1 * r1 * Vr * Δt / (r2 * rрад)

Выразим радиусы (r1) и (r2) через радиальную скорость и учтём, что (ω1 = ω):

r1 = Vr * t

r2 = Vr * (t + Δt)

ω1 = ω

Тогда

Δωрад = ω * Vr2 * t * Δt / (rрад * Vr * (t + Δt)) =

= ω * Vr * t * Δt / (rрад * (t + Δt))

При малом (Δt):

t + Δt  t

Тогда:

Δωрад ω * Vr * Δt / rрад (4.2.10)

Подставим (4.2.10) в (4.2.9):

Fкс m * rэ * ω * Vr * Δt / rэ * Δt m * Vr * ω (4.2.11)

Расчёт истинной силы Кориолиса полностью аналогичен расчёту статической силы Кориолиса, причем, в том же самом диапазоне изменения угловой и линейной скоростей. Естественно, что аналогичным будет и результат расчёта истинной силы Кориолиса. Поэтому мы не будет его приводить подробно, а лишь напомним, что истинная сила Кориолиса направлена противоположно поддерживающей силе, следовательно, она полностью компенсирует статическую составляющую поддерживающей силы.

Таким образом, мы подтвердили нашу версию явления Кориолиса строгим математическим расчётом.

В точности соответствует половине классической силы Кориолиса только динамическая составляющая полного силового напряжения Кориолиса в нашей версии. При приведении значений полной, статической и истинной силы Кориолиса к классическому виду мы использовали условные допущения в малом интервале времени (t + Δt / 2  t + Δt), (t + Δt t) и (t + Δt t) соответственно. Это связано с приведением угловой скорости (ω2) к исходной угловой скорости (ω1 = ω), которое применяется во всех случаях, кроме динамической составляющей.

Физическая причина этого несоответствия на наш взгляд состоит в том, что теоретическое соотношение (V1 * r1 = V2 * r2) выполняется для проекций линейной скорости спирали во время поворотного движения. В реальной действительности это соотношение выполняется только для установившихся вращений до и после поворотного движения. Об этом свидетельствует вывод соотношений второго закона Кеплера, приведённый в главе (3.4.3.).

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3