Александр Алексеевич Астахов - Физика. Порядок вещей, или Осознание знаний. Книга 2 стр 21.

Шрифт
Фон

Абсолютная величина полного силового напряжения Кориолиса с учётом истинной силы Кориолиса определяется изменением линейной скорости от (Vли = ω2 * r2) до (Vлд = ω1 * r2). Зная граничные значения линейной скорости поворотного движения (Vли = ω2 * r2) и (Vлд = ω1 * r2), определим граничные угловые скорости приведённого вращения (ω1рад) и (ω2рад) для этих линейных скоростей, как частное от деления граничных линейных скоростей на меру пространства во вращательном движении (rрад).

ω1рад = ω2 * r2 / rгад

ω2рад = ω1 * r2 / rрад

Отсюда приращение угловой скорости эквивалентного вращательного движения для определения полной силы Кориолиса равно:

Δωрад = ω2 рад  ω1рад = ω1 * r2 / rрад  ω2 * r2 / rрад (4.2.1)

Тогда уравнение динамики вращательного движения, приведённого к общему эквиваленту  мерному радиану примет вид:

Fрад =  Fк = m * (ω2 * r2  ω1 * r2) / Δt (4.2.2)

где

Fк: сила Кориолиса.

Или в более общем виде:

Fрад =  Fк = (m * rрад * Δωрад) / Δt (4.2.3)

Поскольку

Δωрад / Δt = εрад,

то после дифференцирования выражения (4.2.3) в предположении, что переменной дифференцирования является (Δωо) сила Кориолиса определится также следующим выражением:

Fк = m * rрад* εрад (4.2.4)

Как видно выражение (4.2.3), (4.2.4) отличаются от привычной традиционной формулы для силы Кориолиса. В них отсутствует множитель «2», а также радиальная скорость относительного движения и угловая скорость переносного вращения. Зато присутствует радиус, который нельзя дифференцировать по времени, т.к. по физическому смыслу динамики вращательного движения это величина постоянная.

С учётом меры вращения (rо) выражение (4.2.3) и (4.2.4) можно переписать в символах динамики Ньютона:

= (m * rрад * Δωрад) / Δt = (m * rрад * Δω* r / rрад) / Δt =

= m * Δω *r / Δt = m * ΔV/ Δt = m * ак (4.2.3*)

или

= m * rрад* εрад = m * rрад * ε * r / rрад = m * ε * r =

= m * ак (4.2.4*)

Поскольку мы фактически вели расчёт по приращению линейной скорости переносного вращения, то совершенно очевидно, что ускорение Кориолиса (ак) определяет только приращение линейной скорости по абсолютной величине. Об этом же свидетельствует и мерная вращательная динамика (см. выражения (4.2.3*) и (4.2.4*)). Никакого центростремительного ускорения по вращению радиальной скорости в его составе нет. Приращение угловой скорости во вращательном движении с постоянным радиусом свидетельствует о приращении только линейной скорости вращения.

Таким образом, предложенный подход к динамике вращательного движения через меру вращения  образцовый радиан, имеющий размерность один метр вращения [мрад], позволяет установить истинный смысл явления Кориолиса, который в классической физике настолько глубоко спрятан в различных абстракциях в виде всяческих моментов, что вот уже более 200 лет его никто не может отыскать.

Для того чтобы иметь возможность сравнивать величину ускорения Кориолиса, полученного с помощью размерного образцового радиана с классическим ускорением Кориолиса необходимо привести полученные нами выражения к традиционному классическому виду с использованием соотношений второго закона Кеплера (ω1 / ω2 = r22 / r12).

В традиционной формуле ускорение Кориолиса, как известно, определяется через угловую скорость переносного вращения и радиальную скорость относительного движения. Для приведения полученных выражений к традиционному виду преобразуем выражение (4.2.1) следующим образом:

Δωрад = ω2рад  ω1рад = ω1 * r2 / rрад  ω2 * r2 / rрад =

= (ω1 * r2  ω2 * r2) / rрад (4.2.5)

Выразим (ω2) через (ω1) в соответствии со вторым законом Кеплера (ω1 / ω2 = r22 / r12):

ω2 = ω1 * r12 / r22

Подставим полученное выражение для (ω2) в (4.2.5):

Δωрад = (ω1 * r22  ω1 * r12) / (r2 * rрад) = ω1 * (r22  r12) / (r2 * rрад)

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3