В случае изменения направления движения тела (Б) на противоположное, т.е. к центру вращения выражение для (Rср) приобретет вид:
Rср = (А V * t) / 2 (4.1.2.10)
S = VлБ * t ак * t2 / 2 (4.1.2.11)
Тогда получим для (ак):
ак = 2 * VлБ / t 2 * А * ω / t + V * ω (4.1.2.12)
или
ак = ω * Vр (4.1.2.13)
***
Поскольку формулы ускорения Кориолиса (4.1.2.8) и (4.1.2.13) соответствуют приращению либо только линейной скорости относительного движения по направлению, либо только приращению линейной скорости переносного движения по абсолютной величине, то формулу ускорения Кориолиса намного проще вывести через прирост линейной скорости переносного вращения.
Пусть тело (Б) движется (см. рис. 4.1.2.2) вдоль радиуса в направлении точки (Д) с постоянной радиальной скоростью (Vр). За время (t) время прохождения пути (БС) линейная скорость движения по окружности увеличится от линейной скорости точки (Б) (Vлб) до линейной скорости точки (С) (Vлс). Разгон происходит под воздействием направляющей (ОД) на тело (Б) с силой эквивалентной силе Кориолиса (Fк) и ускорением Кориолиса (ак). Ускорение определяется как прирост линейной скорости за единицу времени (t):
ак = (VлС VлБ) / t(4.1.2.14)
Если выразить линейные скорости через угловую скорость получим:
ак = (ω * (А + Vр * t) ω * А) / t (4.1.2.15)
или:
ак = ω * Vр (4.1.2.16)
В некоторых случаях радиальное относительное движение может осуществляться с ускорением. Это необходимо учитывать при определении ускорения Кориолиса. Рассмотрим случай равноускоренного радиального движения.
Вернемся еще раз к формуле (4.1.2.14):
ак = (VлС VлБ) / t (4.1.2.14)
Запишем выражение для линейной (окружной) скорости в точке (Б):
VлБ = ω * А (4.1.2.17)
И для линейной (окружной) скорости точки (С):
VлС = ω * (А + Vр * t) (4.1.2.18)
Здесь (Vр) радиальная скорость с учетом радиального ускорения.
Скорость (Vр) можно найти через радиальное ускорение. Так как ускорение в общем случае может меняться, найдем среднюю величину радиального ускорения (ар) на участке (БС):
ар = (арс + арб) / 2 (4.1.2.19)
Тогда радиальная скорость с учетом радиального ускорения определится выражением:
Vр = Vрн + (арс + арб) * t/2 (4.1.2.20) где: Vрн радиальная скорость начальная.
Подставим (4.1.2.20) в (4.1.2.18):
VлС = ω * (А + (Vрн + (арс + арб) * t / 2) * t) =
= ω * А + ω * t * Vрн + ω * арс * t 2 / 2 + ω * арб * t2 / 2 (4.1.2.21)
Подставим (4.1.2.21) и (4.1.2.17) в (4.14):
ак = ω * А / t + ω * Vрн + ω * арс * t / 2 + ω * арб * t / 2 ω * А / t
тогда формула для ускорения Кориолиса при ускоренном радиальном движении примет вид:
ак = ω * Vрн + ω * t * (арс + арб) / 2 (4.1.2.22)
Как следует из выражения (4.1.2.8) и (4.1.2.16), девиация поворотного движения не зависит от начальной линейной скорости переносного вращения, т.к. начальная скорость есть величина постоянная. Поэтому приращение поворотного движения в каждом минимальном интервале времени, начинающегося не с нулевого радиуса эквивалентно приращению поворотного движения с нулевого радиуса.
***
Аналогичный предыдущему геометрический вывод ускорения Кориолиса приведен в справочнике по физике: Х. Кухлинг, «Справочник по физике», МОСКВА, «МИР», 1983.
«Перемещение тела в радиальном направленииравно r = vt. За то же время точка, удаленная от центра вращения на расстояние r, пройдет по дуге окружности путь s = rωt. Подставив сюда выражение для r, получим s = vtωt = vωt2. Отсюда следует, что s ~ t2, т.е. движение происходит ускоренно, а s = аt2/2. Таким образом, vωt2 = аt2/2, следовательно, ускорение Кориолиса равно ак = 2vω» (см. Рис. 4.1.8).
Рис. 4.1.2.3
Как и в большинстве случаев описания физических явлений в современной физике, в выводе Кухлинга какиелибо физические обоснования ускорения Кориолиса отсутствуют. У Кухлинга нет никаких пояснений, из каких соображений путь (s) увязывается с приращением, полученным непосредственно за счет ускорения Кориолиса, кроме некорректной с физической точки зрения фразы: