Если упростить данный расчет, то он будет выглядеть следующим образом.
Если вместо цифр поставить соответствующие обозначения, получается следующая формула:
Разберем для закрепления небольшой пример.
Ростовщик выдал клиенту 300 рублей, через 6 месяцев клиент отдал ему 336 рублей. Необходимо узнать, какова была процентная ставка в месяц по данной сделке?
Итак, у нас есть формула начисления простых процентов
Что нам известно? Известно, что итоговая сумма составила 336 рублей, начальная сумма составляла 300 рублей, период составил 6 месяцев. Необходимо найти неизвестное i в данной формуле, используя простейшие математические расчеты.
Таким образом, процентная ставка в месяц составила в данном примере 2%.
Если представить этот расчет в уже знакомых нам обозначениях, то он будет выглядеть так:
Данную формулу можно применять для различных расчетов. Например, находит начальную сумму, если известны прочие данные уравнения.
1.3. Переменные ставки простых процентов
В практике, при инвестировании средств, иногда предусматриваются изменяющиеся во времени процентные ставки. При этом накопленная на конец срока сумма определяется по следующей формуле:
где,
it переменные ставки простых процентов в периоде t (t=1, 2, , m)
nt период начисления переменной ставки.
Пример.
Клиент положил на депозит 40 000 рублей на 1 год по ставке 9% годовых. По окончании срока депозита, Банк предложил пролонгацию всей суммы вклада на новых условиях еще на 2 года с увеличением ставки на 2%.
Определим, какая сумма будет на депозите по окончании всего срока.
Решение:
Sn = 40 000 х [1 + (1 х 0,09 +2 х 0,11)] = 52 400 рублей.
1.4. Сложные проценты
Начисление сложного процента основано на том, что в определенный момент начисленные проценты прибавляются к сумме вклада, т.е. сумма на счету увеличивается, и в следующем периоде проценты начисляются уже на большую сумму (процент на процент).
Возьмем в качестве примера уже знакомого нам клиента, который выбирает себе самый доходный вклад. Как и в примере с простыми процентами в первый год, клиент вложил 100 рублей под 10% годовых. Вспоминая формулу расчета простых процентов, отразим в цифрах данную ситуацию:
100 х (1+10%) = 110
На второй год клиент решил вложить уже имеющиеся 110 рублей под те же 10% годовых. По известной уже формуле данная ситуация выглядела бы так:
110 х (1+10%)
Вместо 110 вставим наш предыдущий расчет, и у нас получится следующее:
100 х (1+10%) х (1+10%) = 121
На третий год произошла аналогичная ситуация, клиент вложил весь доход, полученный за предыдущие годы, т.е. 121 рубль под ту же ставку 10%. В нашу формулу вместо числа 121 поставим расчет за второй год, т.е. 100 х (1+10%) х (1+10%). За третий год поставим также данные в скобках (1+10%) и у нас получается вот такая формула.
100 х (1+10%) х (1+10%) х (1+10%) = 133,1
Если мы будем считать вложения клиента за следующие годы, то ситуация у нас будет повторяться. По правилам математики упростим получившуюся формулу, и у нас получится:
Теперь заменим рубли на S0, 10% на i и будем выражать проценты в долях. Годы заменим на n, и обозначим сумму вклада с процентами через определенное количество лет как Sn. Тогда получим:
Рассмотрим эффект, который получается от долгосрочных вложений при использовании простых и сложных процентов. Вспомним, каков был доход клиента за этот период:
Графически это будет выглядеть так:
Как видно из рисунка, при краткосрочных вложениях начисление по простым процентам, то есть без реинвестирования накопленных средств, предпочтительнее, чем по сложным процентам. При сроке в один год разница отсутствует. Но при долгосрочных инвестициях сумма, рассчитанная по сложным процентам, значительно выше, чем по простым. Поэтому, если хотите ускорить рост вашего капитала, всегда помните о сложном проценте и реинвестируйте полученную прибыль.