Аркадий Трофимович Серков - Общая теория поля и структура вселенной стр 3.

Шрифт
Фон

Наглядным и убедительным для понимания является расчёт величины g по формуле орбитальной скорости, в которую она входит. Формула имеет вид:


v2= gmd/r, (3)


где v орбитальная скорость, g константа микрогравитации, m атомная масса, d дальтон, r радиус орбиты, на которой обращается электрон.

Рассмотрим расчёт на примере атома водорода. Минимальная частота излучения у водорода наблюдается в серии Хамфри 0,02424.1015с-1. Логично предположить, что эта частота относится к электрону, обращающемуся на крайней поверхностной орбите, радиус которой равен радиусу атома водорода 110 пм. Атомная масса водорода 1,008. d = 1,661.10-24 м. Подставив приведенные значения величин в уравнение (4), получим значение константы микрогравитации g = 1,843 см3/гс2, которое близко по величине к выше приведенному.

Микро гравитационная константа g является таким же объединяющим началом для объектов микро мира, как константа G в законе Ньютона.

Другой скрепой для Солнечной системы и системы атома является закон орбитальных расстояний, который включает в себя практически все параметры характеризующие обе системы.

Орбитальные расстояния в атоме определяются законом разрешённых орбит Бора:


r = kn2 (4)


где r- радиус орбиты, k- константа характерная для данного атома, n главное квантовое число или в развернутом виде:


r = n2(gm/cω)0,5, (5)


где: r радиус разрешённых орбит атома, n квантовое число (ряд целых чисел), g константа микро гравитации, равная 1,847.1028 см3/гс2, m- масса ядра атома, с скорость света, ω- частота вращения ядра, с-1.

Орбитальные расстояния в Солнечной и спутниковых системах выражаются [9] аналогичной формулой:


R = kmn2 (6)


где R орбитальное расстояние, km константа, характерная для данной планетарной макросистемы, n ряд целых чисел (главное квантовое число) или в развёрнутом виде:


R = n2(GMT/C)0,5, (7)


где: R орбитальное расстояние, n главное квантовое число (ряд целых чисел), G гравитационная постоянная, М и Т масса и период осевого вращения центрального тела, С скорость распространения гравитационного излучения, равная 0,25.109 см/с.

Идентичность уравнений (1) и (2), на наш взгляд, говорит о глубокой аналогии рассматриваемых систем и существовании единых закономерностей, лежащих в их основе.

Тела, взаимодействующие по уравнению (1) и (2) находятся во взаимном орбитальном движении и подчиняются третьему закону Кеплера:


R3/T2= GM/4π2 (8)


где: М масса центрального тела, Т период обращения орбитального тела.

Это по-существу третья «скрепа», которая действует, как в Солнечной системе, так и в системе атома, но и тесно связывает изменения в этих системах, которые имеют место при агрегатных и фазовых переходах веществ.

В макромире возможен новый подход к проблеме агрегатных и фазовых переходов, если в основу взять предположение о том, что частицы вещества (атомы, молекулы) взаимодействуют между собой своими массами по обратно квадратичному закону тяготения. Поэтому во всех состояниях они находятся в орбитальном движении относительно друг друга [11]. В этом случае агрегатные и фазовые переходы увязываются с характером орбитального движения, изменениями орбит, по которым движутся частицы. Например, переход от реального газа (перегретого пара) к насыщенному состоянию означает изменение орбиты с гиперболической к параболической. Переход к жидкому состоянию вызван сменой разомкнутой параболической орбиты на замкнутую эллиптическую и круговую орбиту. В том и другом случае мы имеем дело с изменением агрегатного состояния, которое совпадает с фазовым переходом 1-го рода.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3

Популярные книги автора