Константин Владимирович Крамаренко - Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА стр 4.

Книгу можно купить на ЛитРес.
Всего за 239 руб. Купить полную версию
Шрифт
Фон

Сегодняшняя реальность такова, что развитие цивилизации позволило создать технику и технологии по преодолению пространства, но до сих пор не созданы хронотехнологии, обеспечивающие путешествие во времени. Остаётся надеяться, что в недалёком будущем появятся технологические решения и этой проблемы.

Топологическое многообразие микро-, макро- и мегамира

Топология, по сути, является наукой о пространстве. Её возникновению предшествовал длительный период развития математической мысли. Геометрия Евклида в течение двух тысячелетий рассматривалась в качестве единственной геометрии нашего мира. Однако работы Лобачевского и Гаусса показали, что она является лишь одним из типов геометрий, которые могут быть реализованы не только как объекты математического мышления. Великое достижение математической мысли конца XIX и начала XX века, как отмечал немецкий математик Гильберт, заключалось в том, что удалось изгнать чертежи из математики и свести геометрию к алгебре. Возникновение алгебраической геометрии явилось предтечей топологии, которая пошла ещё дальше в своём развитии. В отличие от алгебраической геометрии, изучающей метрические свойства пространства, топология сконцентрировала своё внимание на его качественных свойствах.

С точки зрения топологии, выделяются количественные и качественные (собственно топологические) свойства пространства [4]. К количественным свойствам относятся кривизна, измерение углов, измерение площадей. Качественные свойства пространства представлены размерностью, ориентированностью, связанностью.

Немецкий математик Гаусс ввёл понятие кривизны или деформации пространства, а также разработал метод, позволяющий исследовать искривление той или иной поверхности. Он создал обобщающую систему координат, где угол между осями может быть криволинейным. Кратчайшее расстояние между двумя точками в обобщённой системе координат получило название геодезической линии. Изменился постулат о параллельных прямых в евклидовой геометрии, согласно которому через точку, лежащую вне данной прямой, можно провести только одну прямую параллельную данной. Теперь между точкой, лежащей вне геодезической линии, можно было в зависимости от кривизны не провести ни одной геодезической линии параллельной данной или провести их бесконечное количество. В первом случае кривизна положительна, и пространство замкнуто. Образом такого пространства является шар, на котором все геодезические линии, как дуги больших радиусов, пересекаются, а сумма углов треугольника больше 180 градусов. Во втором случае геодезические линии имеют бесконечную длину, пространство разомкнуто, оно имеет отрицательную кривизну. На поверхности с отрицательной кривизной траектории разбегаются и нигде не пересекаются. Сумма углов на подобной поверхности будет меньше 180 градусов. Моделью такой поверхности является седло, а также обратная сторона тора или бублика. Геометрия Евклида оказалась геометрией плоского пространства с кривизной равной нулю. Кривизна во взаимодействии с качественными свойствами порождает огромное топологическое разнообразие пространства.

Рассмотрим такое топологическое свойство, как размерность. Точка как математический объект не имеет измерения. Движение точки порождает линию. Она имеет одно измерение длину и представляет пример одномерного пространства. Перпендикулярное движение точки относительно линии порождает двухмерное пространство или плоскость. Продолжим алгоритм и получим трёхмерное, а затем четырёхмерное и N-мерные пространства. Представить себе многомерную метрику нельзя, возможности нашего мозга ограничены, но вычислить её можно, используя для этого многоиндексные массивы или матрицы, где количество столбцов и будет определять мерность пространства. Необходимо использовать компьютеры и выполнить проекции, перебрав многомерное многообразие в двухмерных или трёхмерных проекциях. В настоящее время аппарат многомерной метрики широко используется в различных областях науки.

Важной характеристикой размерности пространства является чётность или нечётность. Например, в четырёхмерном пространстве любые две точки будут разделены чем-либо трёхмерным, в двухмерном одномерном. В подобном пространстве возможно существование таких пар точек, для которых сфера или плоскость, заключающая одну из них, не сможет отделить эти объекты друг от друга. Препятствие в этом случае всегда можно обойти и достичь одной и другой точки, не проникая в сферу. Жук сможет выползти из закрытого ящика стола, желток можно отделить от белка, не разбивая яйцо. Тюрьма в таком пространстве невозможна. Заключённые всё равно убегут, так как препятствия всегда можно обойти.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3