Целью данного исследования является полноценное определение понятия ингенциальных и пер-ингенциальных чисел, после процесса исследования релятивистской функции, а также определение местоположения на числовой оси. Вместе с этим определение арифметических и алгебраических операций над этими числами, участие их в различных теориях, указание различных операций над ними до некоторого определённого уровня первоначальной математики. Далее уже следует переход на последующий этап исследования.
Задачи исследования являются:
· Определение первоначальных понятий числа и его разновидностей;
· Представление операций с различными видами чисел;
· Исследование релятивистской функции с указанием последующих выводов;
· Указание понятия ингенциальных чисел и определение их местонахождения на числовой оси;
· Изучение процессов проведения алгебраических и арифметических операций с ингенциальными числами;
· Представление роли ингенциальных чисел в тригонометрическом представлений;
· Решение уравнения Эйлера с ингенциальными числами;
· Указание геометрического смысла ингенциальных чисел;
· Определение местонахождения комплексных чисел на числовой оси;
· Указание понятия пер-ингенциальных чисел и определение их местонахождения на числовой оси;
· Изучение процессов проведения алгебраических и арифметических операций с пер-ингенциальными числами;
· Представление роли пер-ингенциальных чисел в тригонометрическом представлений;
· Решение уравнения Эйлера с пер-ингенциальными числами;
· Указание геометрического смысла пер-ингенциальных чисел.
Объектом данного исследования являются ингенциальные и пер-ингенциальные числа.
Предметом исследования является процесс определения всевозможных операций в ингенциальной математике.
При проведении данной работы применён теоретический метод исследования.
Научная новизна данной работы заключается в следующем:
· Первое исследование функции для релятивистской энергии как полностью математический объект;
· Определение местонахождения на числовой оси комплексных чисел;
· Первое указание понятия ингенциальных чисел и определение их местонахождения на числовой оси;
· Изучение процессов проведения алгебраических и арифметических операций с ингенциальными числами;
· Представление роли ингенциальных чисел в тригонометрическом представлений;
· Решение уравнения Эйлера с ингенциальными числами;
· Указание геометрического смысла ингенциальных чисел;
· Первое определение местонахождения комплексных чисел на числовой оси;
· Указание понятия пер-ингенциальных чисел и определение их местонахождения на числовой оси;
· Изучение процессов проведения алгебраических и арифметических операций с пер-ингенциальными числами;
· Представление роли пер-ингенциальных чисел в тригонометрическом представлений;
· Решение уравнения Эйлера с пер-ингенциальными числами;
· Указание геометрического смысла пер-ингенциальных чисел.
Практические результаты заключаются в следующем:
· Положен новый этап в развитии математического аппарата запутанных квантовых состояний;
· Открыта возможность решения уравнений Шрёдингера и иных уравнений, связанных с комплексными числами, благодаря ингенциальным операциям;
· Полное или частичное выполнение функций комплексных чисел ингенциальными выражениями и операциями.
Достоверность результатов основана на чисто математическом представлении данной операции с последующими составляющими и выводами, благодаря чему не подлежит какому-либо сомнению.
Говоря о значимости данного исследования, то уместно отметить тот факт, что при использовании данной математики в широком спектре, это может привести к созданию целого ряда самых различных удобств при решении задач, выполнении многочисленных функций и прочих.
Данное исследование было обсуждено на собрании учёных Научной школы «Электрон», при Организации «Электрон» и созданный совместно с Ферганским Государственным Университетом. Также данный проект является одним из первых проектов, активно развивающихся в стенах новой Научной школы, и порождает целый ряд направлений для новых исследований.
Таки образом, можно сказать, что проект «Ингенциальной математики» уже делает свои первые шаги в направлении успеха и своего развития, порождая новые направления и многообещающие результаты, которые с большой вероятностью могут оказаться настоящим прорывом в науке!