Марат Альбертович Бурнашев - Ингенциальная математика. Монография стр 2.

Шрифт
Фон

Целью данного исследования является полноценное определение понятия ингенциальных и пер-ингенциальных чисел, после процесса исследования релятивистской функции, а также определение местоположения на числовой оси. Вместе с этим определение арифметических и алгебраических операций над этими числами, участие их в различных теориях, указание различных операций над ними до некоторого определённого уровня первоначальной математики. Далее уже следует переход на последующий этап исследования.

Задачи исследования являются:

· Определение первоначальных понятий числа и его разновидностей;

· Представление операций с различными видами чисел;

· Исследование релятивистской функции с указанием последующих выводов;

· Указание понятия ингенциальных чисел и определение их местонахождения на числовой оси;

· Изучение процессов проведения алгебраических и арифметических операций с ингенциальными числами;

· Представление роли ингенциальных чисел в тригонометрическом представлений;

· Решение уравнения Эйлера с ингенциальными числами;

· Указание геометрического смысла ингенциальных чисел;

· Определение местонахождения комплексных чисел на числовой оси;

· Указание понятия пер-ингенциальных чисел и определение их местонахождения на числовой оси;

· Изучение процессов проведения алгебраических и арифметических операций с пер-ингенциальными числами;

· Представление роли пер-ингенциальных чисел в тригонометрическом представлений;

· Решение уравнения Эйлера с пер-ингенциальными числами;

· Указание геометрического смысла пер-ингенциальных чисел.

Объектом данного исследования являются ингенциальные и пер-ингенциальные числа.

Предметом исследования является процесс определения всевозможных операций в ингенциальной математике.

При проведении данной работы применён теоретический метод исследования.

Научная новизна данной работы заключается в следующем:

· Первое исследование функции для релятивистской энергии как полностью математический объект;

· Определение местонахождения на числовой оси комплексных чисел;

· Первое указание понятия ингенциальных чисел и определение их местонахождения на числовой оси;

· Изучение процессов проведения алгебраических и арифметических операций с ингенциальными числами;

· Представление роли ингенциальных чисел в тригонометрическом представлений;

· Решение уравнения Эйлера с ингенциальными числами;

· Указание геометрического смысла ингенциальных чисел;

· Первое определение местонахождения комплексных чисел на числовой оси;

· Указание понятия пер-ингенциальных чисел и определение их местонахождения на числовой оси;

· Изучение процессов проведения алгебраических и арифметических операций с пер-ингенциальными числами;

· Представление роли пер-ингенциальных чисел в тригонометрическом представлений;

· Решение уравнения Эйлера с пер-ингенциальными числами;

· Указание геометрического смысла пер-ингенциальных чисел.

Практические результаты заключаются в следующем:

· Положен новый этап в развитии математического аппарата запутанных квантовых состояний;

· Открыта возможность решения уравнений Шрёдингера и иных уравнений, связанных с комплексными числами, благодаря ингенциальным операциям;

· Полное или частичное выполнение функций комплексных чисел ингенциальными выражениями и операциями.

Достоверность результатов основана на чисто математическом представлении данной операции с последующими составляющими и выводами, благодаря чему не подлежит какому-либо сомнению.

Говоря о значимости данного исследования, то уместно отметить тот факт, что при использовании данной математики в широком спектре, это может привести к созданию целого ряда самых различных удобств при решении задач, выполнении многочисленных функций и прочих.

Данное исследование было обсуждено на собрании учёных Научной школы «Электрон», при Организации «Электрон» и созданный совместно с Ферганским Государственным Университетом. Также данный проект является одним из первых проектов, активно развивающихся в стенах новой Научной школы, и порождает целый ряд направлений для новых исследований.

Таки образом, можно сказать, что проект «Ингенциальной математики» уже делает свои первые шаги в направлении успеха и своего развития, порождая новые направления и многообещающие результаты, которые с большой вероятностью могут оказаться настоящим прорывом в науке!

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3