Геннадий Степанов - Искусственный ложный Разум и Мир стр 4.

Книгу можно купить на ЛитРес.
Всего за 200 руб. Купить полную версию
Шрифт
Фон

Гёдель доказал неполноту формальных исчислений, что не позволяет осуществлять алгоритмизацию процесса мышления.

Гёдель впервые обосновал проблему о соотношении между человеческим мозгом, разумом и мышлением, и машинным искусственным разумом.

Попытки Гёделя найти единый математический аппарат для решения любых математических проблем не закончились успехом. Он не смог понять и объяснить, что такое разум и мышление и в чём заключается интуиция, присущая человеческому мозгу.

Его обращение к различным философским течениям, занимавшихся исследованиями разума и мышления человека, повлекли за собой его особое внимание к метафизики и теологии.

Первая теорема Геделя о неполноте арифметики, которая является дедуктивной формальной системой, утверждает, что в любой формальной системе исчислений существуют высказывания истинные, но недоказуемые в этой системе Он утверждает, что неразрешимые высказывания могут оказаться разрешимыми в более сильной системе, получаемой добавлением к исходной формальной системе неразрешимого высказывания, в качестве аксиомы. Для новой системы опять можно эффективно получить новое геделево неразрешимое высказывания. Итерация этого процесса дает расширение арифметики, которое оказывается бесконечным. В этом смысле Гёдель говорит о незавершённости математики. На каждом этапе конструируется новое неразрешимое высказывание, которое оказывается разрешимым при следующем расширении формальной системы исчислений

Гёдель разработал концепцию о незавершённости математики и абсолютной неразрешимости некоторых математических утверждений. Им было внесено понятие объективной математики, которому он придал метафизический характер. Он ввёл различие между объективной и субъективной математикой.

Гёдель предположил существования абсолютно неразрешимых утверждений. Это полностью соответствует концепции Платона, согласно которому математические истины существуют вне и независимо от человеческого сознания и в этом смысле эти математические истины недоступны для человеческого познания и являются априорными по Канту.

Гёдель определил абсолютно неразрешимые утверждения как объективную математику, а математику, которая доступна человеку, он определил как субъективная математика, или человеческая математика. Два вида математики тесно связаны со второй теоремой Геделя о неполноте. Именно эта теорема делает незавершенность математики очевидной. Согласно ей невозможно выбрать определенную систему аксиом и правил и непротиворечиво сделать следующее утверждение о ней, где все аксиомы и правила, которые воспринимаются с математической определенностью, должны быть правильными, и что они содержат всю математику. Очевидно, никакая вполне определенная система правильных аксиом не может включать всю объективную математику, так как утверждение, которое устанавливает непротиворечивость системы истинно, но недоказуемо в системе. Однако что касается субъективной математики, то в ней может существовать конечное правило для произведения всех ее очевидных аксиом

Таким образом, под субъективной математикой Гёделем понимается система всех доказуемых математических утверждений, в то время как под математикой объективной Гёделем понимается система всех истинных математических утверждений по Канту.

Разделение математики Гёделем на объективную и субъективную имеет важное значение для решения вопроса в математическом познании соотношения между человеческим мозгом разумом и мышлением и машинным разумом и мышлением.

Математическая определенность является некоторой характеристикой чистой математики, основанной на доказательстве, и поэтому истинность в чистой математике не дает гарантий математической определенности. Именно это указывает на возможность существования таких математических истин, которые в принципе не могут быть разрешены человеческим мозгом разумом и мышлением по Канту.

Если объективная математика может включать проблемы, не являющиеся неразрешимыми для человеческого мозга разума и мышления, то субъективная математика включает в себя, лишь познаваемые утверждения, которые можно вывести и доказать.

Класс истинных утверждений, которые человеческий мозг разум и мышление способен постичь с математической определенностью, представляет собой подкласс, по Гёделю, всех истинных утверждений математики. Концепция математической определенности связана с постижимостью человеческого мозга разума и мышления математических истин (эффект «ага!») по Канту.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3