Геннадий Степанов - Искусственный ложный Разум и Мир стр 4.

Шрифт
Фон

Гёдель доказал неполноту формальных исчислений, что не позволяет осуществлять алгоритмизацию процесса мышления.

Гёдель впервые обосновал проблему о соотношении между человеческим мозгом, разумом и мышлением, и машинным искусственным разумом.

Попытки Гёделя найти единый математический аппарат для решения любых математических проблем не закончились успехом. Он не смог понять и объяснить, что такое разум и мышление и в чём заключается интуиция, присущая человеческому мозгу.

Его обращение к различным философским течениям, занимавшихся исследованиями разума и мышления человека, повлекли за собой его особое внимание к метафизики и теологии.

Первая теорема Геделя о неполноте арифметики, которая является дедуктивной формальной системой, утверждает, что в любой формальной системе исчислений существуют высказывания истинные, но недоказуемые в этой системе Он утверждает, что неразрешимые высказывания могут оказаться разрешимыми в более сильной системе, получаемой добавлением к исходной формальной системе неразрешимого высказывания, в качестве аксиомы. Для новой системы опять можно эффективно получить новое геделево неразрешимое высказывания. Итерация этого процесса дает расширение арифметики, которое оказывается бесконечным. В этом смысле Гёдель говорит о незавершённости математики. На каждом этапе конструируется новое неразрешимое высказывание, которое оказывается разрешимым при следующем расширении формальной системы исчислений

Гёдель разработал концепцию о незавершённости математики и абсолютной неразрешимости некоторых математических утверждений. Им было внесено понятие объективной математики, которому он придал метафизический характер. Он ввёл различие между объективной и субъективной математикой.

Гёдель предположил существования абсолютно неразрешимых утверждений. Это полностью соответствует концепции Платона, согласно которому математические истины существуют вне и независимо от человеческого сознания и в этом смысле эти математические истины недоступны для человеческого познания и являются априорными по Канту.

Гёдель определил абсолютно неразрешимые утверждения как объективную математику, а математику, которая доступна человеку, он определил как субъективная математика, или человеческая математика. Два вида математики тесно связаны со второй теоремой Геделя о неполноте. Именно эта теорема делает незавершенность математики очевидной. Согласно ей невозможно выбрать определенную систему аксиом и правил и непротиворечиво сделать следующее утверждение о ней, где все аксиомы и правила, которые воспринимаются с математической определенностью, должны быть правильными, и что они содержат всю математику. Очевидно, никакая вполне определенная система правильных аксиом не может включать всю объективную математику, так как утверждение, которое устанавливает непротиворечивость системы истинно, но недоказуемо в системе. Однако что касается субъективной математики, то в ней может существовать конечное правило для произведения всех ее очевидных аксиом

Таким образом, под субъективной математикой Гёделем понимается система всех доказуемых математических утверждений, в то время как под математикой объективной Гёделем понимается система всех истинных математических утверждений по Канту.

Разделение математики Гёделем на объективную и субъективную имеет важное значение для решения вопроса в математическом познании соотношения между человеческим мозгом разумом и мышлением и машинным разумом и мышлением.

Математическая определенность является некоторой характеристикой чистой математики, основанной на доказательстве, и поэтому истинность в чистой математике не дает гарантий математической определенности. Именно это указывает на возможность существования таких математических истин, которые в принципе не могут быть разрешены человеческим мозгом разумом и мышлением по Канту.

Если объективная математика может включать проблемы, не являющиеся неразрешимыми для человеческого мозга разума и мышления, то субъективная математика включает в себя, лишь познаваемые утверждения, которые можно вывести и доказать.

Класс истинных утверждений, которые человеческий мозг разум и мышление способен постичь с математической определенностью, представляет собой подкласс, по Гёделю, всех истинных утверждений математики. Концепция математической определенности связана с постижимостью человеческого мозга разума и мышления математических истин (эффект «ага!») по Канту.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3