Чего сегодня не хватает искусственному интеллекту (и, скорее всего, эта проблема не решится до тех пор, пока в нашем арсенале не появятся новые подходы) это широты (или универсальности) «мышления». Искусственный интеллект должен уметь справляться не только с ограниченными по своей сути проблемами, для решения которых в память машины уже загружено огромное количество данных, но также и с проблемами, которые окажутся для компьютерных систем новыми, или хотя бы с такими вариациями исходной проблемы, которые ранее не встречались.
Более универсальный машинный интеллект, прогресс в достижении которого был и остается очень медленным, заключается в способности системы гибко адаптироваться к реальному миру, имеющему принципиально открытый характер, и это, по большому счету, основное свойство, куда еще не дотянулись машины. Но именно в таком направлении необходимо двигаться, если мы хотим поднять искусственный интеллект на новый уровень.
Когда узкий искусственный интеллект играет в игру, подобную го, он имеет дело с полностью закрытой системой, которая состоит из игровой доски размером 19 на 19 клеток и набора черных и белых камешков. Правила игры четко прописаны, и поэтому способность мгновенно оценивать множество возможных положений камешков на доске дает машинам явное и само собой разумеющееся преимущество. Система искусственного интеллекта может видеть каждую ситуацию в игре целиком (в отличие от человека, память которого ограничена) и знает все ходы, которые она и ее противник могут сделать, не нарушая правил. Машина сама делает половину ходов в игре и может точно предсказать, каковы будут последствия того или иного хода. Кроме того, шахматные и подобные им программы (включая компьютерных го-партнеров) могут набрать за сравнительно короткое время колоссальный опыт, проведя миллионы виртуальных партий и собрав методом проб и ошибок огромное количество данных, точно отражающих свойства игры, в которой они будут затем соперничать с человеком.
Реальная жизнь, напротив, принципиально открыта; никакие предварительно загруженные данные не в состоянии отразить постоянно меняющийся мир, в котором мы живем. Нет здесь и фиксированных правил, зато возможности безграничны. Мы не можем отработать заранее каждый вариант развития событий или предвидеть, какая информация нам понадобится в той или иной ситуации. Например, ИИ-система, которая читает новости, не может заранее изучить все то, что произошло на прошлой неделе, или в прошлом году, или даже во всей записанной истории, потому что все время возникают новые и новые ситуации. Интеллектуальная система чтения новостей должна быть в состоянии освоить практически любую справочную информацию, которую может знать средний взрослый, даже если она никогда не фигурировала в новостях раньше. Диапазон этого огромен, от «Чтобы закрутить винт, можно воспользоваться отверткой» до «Шоколадный пистолет вряд ли сможет выстрелить настоящими пулями». Гибкость мышления вот что такое универсальный интеллект, которым наделен любой человек.
Даже множество узких вариантов искусственного интеллекта никогда не заменят интеллект широкий. Было бы абсурдно (да и непрактично) иметь одну ИИ-систему для анализа ситуаций, связанных с бытовыми инструментами, а другую для оценки свойств шоколадного оружия; более того, у нас никогда не хватит данных, чтобы обучить их все. По определению, никакая система машинного интеллекта не сможет впитать в себя достаточно данных, чтобы охватить весь спектр возможных обстоятельств в реальном мире. Дело в том, что сам процесс понимания информации не вписывается в парадигму узкого искусственного интеллекта, основанного исключительно на предварительном обучении, поскольку ситуаций в мире всегда больше, чем данных.
Открытость мира означает, что воображаемые роботы, живущие в наших домах, столкнулись бы с бесконечным, по существу, миром возможностей, взаимодействуя с огромным количеством объектов, от каминов до картин, от чесночных прессов до интернет-роутеров, от мягких игрушек до живых существ вроде кошек, собак или хомячков, детей, членов семьи и гостей. Они бы постоянно сталкивались с новыми предметами, которые, например, появились на рынке только на прошлой неделе и теперь заменили собой прежние. Обо всем этом наш робот должен был бы рассуждать в режиме реального времени. Например, все картины в доме выглядят по-разному, но мы не можем позволить роботу методом бесконечных проб и ошибок учить, что можно и нельзя с ними делать, применительно для каждой картины отдельно (например, поправлять их на стене, но не снимать со стены, сдувать с них пыль, но не мыть акварели водой и т. д.).