Сильный, или общий AI (AGI, Artificial General Intelligence) По степени разумности AGI стоит на ступень ниже ASI, его адепты убеждены в возможности создания машин, если не превосходящих уровень человека, то способных как минимум выполнять те же действия, что и человек. Эта точка зрения не менее спорна, чем позиция сторонников ASI, поскольку у человека и у машины совершенно разные способности. В чем резон попыток воспроизвести машинными средствами интеллектуальные или другие способности, присущие человеку? Человечество пошло иным путем, создавая машины, которые быстрее и лучше перемещаются по земле, в воздухе, на воде и под водой, не копируя то, как делают человек или животные, машине машинное, человеку человеческое, Что же до AI, то мы до сих пор толком не знаем, как устроен и как работает наш мозг, поэтому нет и не может быть системы оценок для сравнения способностей человеческого и искусственного мозга. Чаще всего сторонники AGI апеллируют к тезису Черча-Тьюринга, в предельно упрощенной трактовке постулирующего, что любая сведенная к алгоритмической форме задача может быть решена, если нет ограничений на время и объем памяти. Но кто и на чем основываясь может утверждать, что работу мозга можно полноценно алгоритмизировать? По оценкам, представленным Институтом глобальных рисков катастроф (Global Catastrophic Risk Institute) в отчете A Survey of Artificial General Intelligence Project for Ethics, Risk, and Policy (2017), в мире тема AGI не пользуется популярностью, насчитывается не более полусотни небольших коллективов, работающих в этом направлении, их труды не выходят за рамки теоретических разработок. В 2017 году издание IEEE Spectrum провело круглый стол «HLAI близко или далеко» (Human-Level AI Is Right Around the Corner or Hundreds of Years Away) с участием десяти активно выступающих со своими прогнозами AI-оптимистов и AI-пессимистов в соотношении 5:5. Разброс мнений оказался чрезвычайно велик: оптимисты, среди них Рэй Курцвейл и Юрген Шмидхубер, верят в HLAI, но расходятся в оценках, одни готовы увидеть его в ближайшее десятилетие, а другие отводят срок на прядок больше, пессимисты же, представленные Кавером Мидом, Родни Бруксом и другими считают, что машинный и человеческий интеллект суть совершенно разные вещи и к ним не стоит подходить с общей меркой. Вывод один если и ДА, что сомнительно, то не при нашей жизни.
Слабый, или узкий ANI (Artificial Narrow Intelligence) Слово узкий вообще-то подходит точнее, но ANI по-русски принято называть слабым, пусть будет так, но он все же узкий в том смысле, что системы с ANI обладают лишь отдельными качествами, позволяющими усмотреть в их поведении признаки разумности, они предназначены только для выполнения строго определенного узкого круга приложений. В отличие от ASI и AGI здесь невозможно никакое неподвластное человеку автономное поведение и самостоятельное развитие, системы, снабженные ANI, могут существовать только в той форме, в которой они были созданы человеком и находиться под контролем человека. Диапазон реализаций ANI распространяется от виртуальных помощников типа Алисы, Siri и им подобных до систем, работающих на компьютере IBM Watson, способных к игре Jeopardy! и к участию в медицинской диагностике. Даже такие мощные системы как Google Translation Engine или системы автономного вождения автомобилей самого высокого 5 уровня, буде они созданы, останутся в своей узкой нише, даже они не выйдут за пределы ANI. О масштабах ANI как явления, которое сейчас называют «электричеством XXI века» говорит такой факт число стартапов, работающих в этой области во всем в мире превышает 10 тысяч, а объем бизнеса измеряется сотнями миллиардов долларов.
Тьюринг и AI
Имя Алана Тьюринга неотделимо от AI, чаще всего его связывают с возможностью создания думающей машины. В качестве подтверждения указывают на тест Тьюринга, он де позволяет судить о наличии интеллекта у машины. Но истинный вклад Тьюринга в дело AI намного значительнее, чем приписываемые ему общие рассуждения о возможности создания AI и теста. Еще в конце 40-х годов он предсказал практические пути, могущие привести к созданию «умной машины» (термина AI тогда еще не было), ни в малейшей степени не связанные с тестом. Мысли, высказанные более 70 лет назад, сегодня ценны с исторической точки зрения, но не только, основываясь на них, удается лучше понять нынешнюю ситуацию. Тьюринг, как пророк, совершенно точно предсказал два альтернативных подхода к AI: один «сверху-вниз» этот подход мы сегодня называем символьным, а другой «снизу-вверх», мы его называем коннекционизмом, заимствую термин из науки когнитивистики. Дальнейший процесс развития AI принял форму параллельной эволюции (коэволюцию) двух спрогнозированных Тьюрингом подходов, в рамках каждого сложился свой поток событий, во взаимосвязи они образуют историю AI. В этих условиях задача автора книги свелась к изложению событий, связанных с символьным и коннекционистским подходами.