физические и физико-химические менять физическую структуру отходов с помощью силового поля, применение специально подобранных реагентов, изменяющих физико-химические свойства, с последующей обработкой на специальном оборудовании;
биологические микробиологическое разложение в почве непосредственно в местах хранения, биотермическое разложение.
3.1. Термические методы
Сущность термообработки заключается в сжигании горючих отходов или огневой обработке негорючих отходов высокотемпературными (более 1000°С) продуктами сгорания топлива. Эффективными считаются термические методы, при которых основным является тепловое воздействие (нагревание или окисление):
термообработка отходов;
уничтожение с помощью ИК-нагрева;
уничтожение в высокоэффективном электрическом реакторе (fluid wall destruction);
сжигание в кипящем слое (fluidized bed system);
пиролиз;
окисление суперкритической водой.
Аппараты для огневого обезвреживания и переработки отходов включают в себя: слоевые топки, барабанные вращающиеся печи, многоподовые печи, камерные печи, шахтные печи, топки котельных агрегатов, реакторы с псевдоожиженном (кипящим) слоем, пенно-барботажные реакторы рис.3.3.
Рис. 3.3. Некоторое оборудование для сжигания твердых отходов
В зависимости от типа отходов и способа обезвреживания огневой метод подразделяют на три типа: сжигание отходов, огневой окислительный метод, огневой восстановительный метод.
Сжигание отходов, способных гореть самостоятельно (горючих отходов), наиболее простой и надежный метод их обезвреживания. Для обеспечения устойчивого процесса горения сжигание отходов проводится при температуре отходящих газов 1200-1300°С. Данный метод обеспечивает получение ценной продукции: отбеливающая земля, активированный уголь, известь, сода и др. Химический состав промышленных отходов определяет содержание дымовых газов (SOХ, P, N2, H2SO4, HC1), соли щелочных и щелочноземельных элементов плюс инертные газы.
Огневой окислительный метод обезвреживания негорючих отходов заключается в том, что их вводят в поток высокотемпературных продуктов сгорания топлива. При смешении газообразного отхода с дымовыми газами происходит его нагрев и окисление горючих компонентов за счет кислорода дымовых газов или кислорода, содержащегося в отходах. Токсичные компоненты подвергаются окислению, термическому разложения и другим химическим превращениям с образованием безвредных газов (С02, Н20, N2) и твердых остатков (оксидов металлов, солей).
Огневой восстановительный метод отличается от огневого окислительного проведением процесса обезвреживания (или только стадии огневой обработки) происходит в восстановительной среде (при отсутствии свободного кислорода в печной атмосфере). Данный метод используется для уничтожения токсичных отходов без получения каких-либо побочных продуктов, пригодных для дальнейшего использования в качестве сырья или товарных продуктов. В результате образуются безвредные дымовые газы и стерильный шлак, сбрасываемый в отвал. Так можно обезвреживать газообразные и твердые выбросы, бытовые отходы и некоторые другие.
Чтобы достичь хорошей степени разложения промышленных отходов, особенно галоидосодержащих, печь, предназначенная для сжигания продуктов, должна обеспечивать необходимое время их нахождения в зоне горения, хорошее перемешивание реагентов с кислородом при определенной температуре. Количество кислорода регулируется, чтобы не образовывались галогены, а полностью переходили в галогеноводороды, необходимо избыточное количество воды и как можно меньше кислорода, чтобы образовывалось меньше сажи.
Недостаток метода заключается в необходимости предварительной сортировки отходов. Они не должны содержать в своем составе соединения фосфора, галогенов и серы. В противном случае в процессе горения, а также в результате неполного сгорания будут образовываться высокотоксичные канцерогенные газовые выбросы, содержащие диоксины и фураны.
Диоксины и фураны-две структурно близкие группы полихлор органических веществ. Среди них выделяют 7 диоксинов, обладающих особенно высокой токсичностью и 10 фуранов, свойства которых близки диоксинам. Эти вещества относят к стойким органическим загрязнителям, обладают высокой стабильностью и длительным периодом полураспада, для диоксинов он составляет 7-11 лет.