Рис. 1.2. Экспоненциальный рост скорости вычислений в 300 тыс. раз в процессе выполнения различных обучающих ИИ программ. Источник: с изменениями из: D. Hernandez and D. Amodei, AI and Compute, Open AI (2018): http://blog.openai.com/ai-and-compute.
Я не верю, что глубокое обучение искусственного интеллекта сделает его способным лечить все болезни и устранять недостатки современного здравоохранения, но список, приведенный в табл. 1.1, дает представление о том, насколько широко можно использовать этот инструмент и насколько реклама преувеличивает его возможности. Со временем искусственный интеллект поможет нам продвинуться в решении всех перечисленных задач, но это будет марафон без финишной черты.
Примеры глубокого обучения демонстрируют его достаточно узкую специфичность: алгоритм, предсказывающий вероятность депрессии, не работает в дерматологии. Эти алгоритмы, построенные по принципу нейронных сетей, зависят от распознавания паттернов, то есть схем-образов, устойчивых наборов признаков, что будет полезно врачам, качество работы которых зависит от способности распознавать и интерпретировать изображения, например, рентгенологам и патологоанатомам. Таких врачей я называю врачами-«паттернистами». Пусть и реже, но все же довольно часто всем клиницистам приходится в ходе работы так или иначе распознавать образы и выявлять закономерности, и потенциально каждому из них пригодилась бы алгоритмическая поддержка искусственного интеллекта.
Рис. 1.3. Повышение точности работы машинного искусственного интеллекта с изображениями (А) и речью (В). При работе с упорядоченными базами данных и выполнении узконаправленных задач качество работы искусственного интеллекта выше качества работы человека. Источники: график А с изменениями из: V. Sze et al., Efficient Processing of Deep Neural Networks: A Tutorial and Survey, Proceedings of the IEEE (2017); 105 (12), 22952329. График B с изменениями из: Performance Trends in AI, Word Press Blog (2018): http://srconstantin.wordpress.com/2017/01/28/ performance-trends-in-ai.
По большей части опубликованные примеры глубокого обучения представляют собой валидацию in silico, то есть на компьютерных моделях (что противопоставляется проспективным клиническим испытаниям с участием реальных пациентов). Очень важно отличать одно от другого, потому что анализ существующего массива данных это не то же самое, что сбор данных в реальной клинической ситуации. Полученные in silico ретроспективные результаты часто представляют наилучший и самый благоприятный сценарий, который невозможно воспроизвести в ситуации, когда величины данных заранее неизвестны, как это имеет место в клинических испытаниях. Данные ретроспективных исследований могут помочь сформулировать гипотезу, которую затем можно проверить в ходе проспективного исследования, в особенности если его будут независимо друг от друга выполнять разные группы.
Таблица 1.1Безосновательные надежды на искусственный интеллект, связанные с медициной (далеко не полный список)Искусственный интеллект:
Превзойдет врачей при решении всех медицинских задач
Сможет диагностировать не поддающиеся диагностике болезни
Лечить неизлечимые заболевания
Видеть невидимое на изображениях и препаратах
Предсказывать непредсказуемое
Классифицировать не поддающееся классификации
Исключить неэффективные этапы из рабочего процесса
Поможет ликвидировать необходимость в госпитализациях и повторных госпитализациях
Устранит избыток ненужной работы
Позволит неукоснительно соблюдать режим приема лекарств
Сведет к нулю вред для пациентов
Сможет излечивать рак
Мы еще в самом начале эпохи искусственного интеллекта; это пока не повседневная медицинская практика, и некоторые скептики называют применение искусственного интеллекта в медицине SiliconValley-dation, намекая, что подобная валидация годится для проектов в Кремниевой долине (SiliconValley), а не для работы с живыми людьми. Такое пренебрежительное отношение распространено в медицине и чрезвычайно замедляет изменения. В результате весь мир уже находится на стадии четвертой промышленной революции, ознаменованной пришествием искусственного интеллекта, а медицина застряла в предыдущей эпохе на стадии третьей революции, когда только-только начали широко применяться компьютеры и электроника (см. рис. 1.4). Например, файлы MP3 совместимы со всеми моделями музыкальных проигрывателей, а медицине только предстоит освоить удобные в использовании электронные формы медицинской документации, совместимые с различными устройствами. Это наглядный пример того, с каким трудом новое пробивает себе дорогу в этой отрасли.