Тимур Машнин - Технология хранения и обработки больших данных Hadoop стр 2.

Книгу можно купить на ЛитРес.
Всего за 490 руб. Купить полную версию
Шрифт
Фон

Также файловая система HTFS поддерживает так называемый вторичный узел NameNote, который регулярно подключается к первичному узлу NameNote и создает снимки его состояния, запоминая, что система сохраняет в локальных и удаленных каталогах.

В каждой системе, основанной на Hadoop, содержится какая-то версия движка MapReduce.



Типичный движок MapReduce содержит средство отслеживания работы, в которое клиентские приложения могут отправлять задания MapReduce.

И этот трекер работы передает задачи всем доступным трекерам задач, которые есть в кластере.

Таким образом, классический Hadoop MapReduce представляет собой один процесс JobTracker и произвольное количество процессов TaskTracker, или по-другому один мастер узел и множество узлов slave.

MapReduce выполняет работу над огромным набором данных, обрабатывая данные и сохраняя их в HDFS таким образом, что извлечение данных производится проще, чем в традиционном хранилище.

Модель MapReduce следует принципам функционального программирования, вследствие чего пользовательские вычисления выполняются как функции map и reduce, обрабатывающие данные в виде пар ключ-значение.

Hadoop предоставляет высокоуровневый программный интерфейс для реализации пользовательских функций map и reduce на различных языках.

Также Hadoop предоставляет инфраструктуру для выполнения заданий MapReduce в виде серий задач map и reduce.

Задачи map вызывают функции map для обработки наборов входных данных.

Затем задачи reduce вызывают функции reduce для обработки промежуточных данных, сгенерированных функциями map, формируя окончательные выходные данные.

Задачи map и reduce выполняются изолированно друг от друга, что обеспечивает параллельность и отказоустойчивость вычислений.



Hadoop версии 1 содержал компоненты HDFS и Map Reduce.

И Hadoop версии 1 разрабатывался только для выполнения заданий MapReduce.

А Hadoop версии 2 уже содержит компоненты HDFS и YARN/Map Reduce версии 2.

В классическом Map Reduce, когда мастер узел перестает работать, тогда все его узлы slave автоматически перестают работать.

И мы должны перезапустить весь кластер и заново начать выполнять работу.

Это единственный сценарий, когда выполнение работы может прерваться, и это создает единственную точку отказа.

Компонент YARN или Yet Another Resource Negotiator решает эту проблему благодаря своей архитектуре.



YARN основывается на концепции нескольких мастер узлов и нескольких подчиненных slave узлов, и если один мастер узел выйдет из строя, тогда другой мастер узел возобновит процесс и продолжит выполнение.

Классический Map Reduce отвечает как за управление ресурсами, так и за обработку данных.

В Hadoop версии 2, YARN разделяет функций управления ресурсами и планирования/мониторинга заданий на отдельные демоны.

YARN это универсальная платформа для запуска любого распределенного приложения, и здесь Map Reduce это распределенное приложение, которое работает поверх YARN.

Таким образом, YARN отвечает за управление ресурсами, то есть решает, какая работа будет выполняться и какой системой.

Тогда как Map Reduce является фреймворком программирования, который отвечает за то, как выполнить конкретную работу, используя два компонента mapper и reducer.

YARN отделяет компоненты управления ресурсами от компонентов обработки, и YARN не сводится только к MapReduce.

Диспетчер ресурсов resource manager YARN оптимизирует использование кластера и поддерживает другие рабочие процессы, кроме Map Reduce.

Поэтому здесь мы можем добавлять дополнительные программные модели, такие как обработка графов или итеративное моделирование, которые могут обрабатывать данные, используя те же кластеры и общие ресурсы.



Поверх HDFS и Yarn могут работать множество компонентов, и эта архитектура также развивалась с течением времени.

Давайте посмотрим на историю и посмотрим, как вся эта экосистема Hadoop развивалась и росла со временем.

Как вы можете заметить, у многих из этих приложений смешные имена.

Как мы можем понять весь этот зоопарк, и как мы можем понять, что делает каждое из этих приложений?

Проект Hadoop возник из концепции Google MapReduce и идеи о том, как можно обрабатывать очень большие объемы данных.



Здесь показан стек Google Big Data.

И он начинается с файловой системы Google GFS.

В Google подумали, что будет хорошей идеей использовать большое количество распределенного дешевого хранилища, и попытаться разместить там много данных.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3