Юрий Степанович Почанин - Конструкции и монтаж фотоэлектрических модулей стр 4.

Книгу можно купить на ЛитРес.
Всего за 690 руб. Купить полную версию
Шрифт
Фон

Солнечная энергетика развивается по двум направлениям. По первому направлению (фотовольтаика) солнечная энергия преобразуется в электрическую с помощью фотоэлементов, второе направление (гелиотермальная энергетика) нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла. В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч солнца. Этот луч солнца используется как источник тепловой энергии для нагрева рабочей жидкости, которая расходуется для электрогенерации по аналогии с обычными ТЭЦ или накапливается для сохранения энергии. Фотоэлектрические элементы могут устанавливаться на различных транспортных средствах: лодках, электромобилях и гибридных автомобилях, самолётах, дирижаблях и т. д. Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства, или для электродвигателя электрического транспорта. В Италии и Японии фотоэлектрические элементы устанавливают на крыши ж/д поездов. Они производят электричество для кондиционеров, освещения и аварийных систем.

Фотоэлектрические системы хорошо зарекомендовали себя с самого начала промышленного применения фотоэлементов. К примеру, фотоэлементы служат основным источником питания для спутников на околоземной орбите с 1960-х годов. В отдаленных районах фотоэлементы обслуживают автономные энергоустановки с 1970-х. В 1980-х годах производители серийных потребительских товаров начали встраивать фотоэлементы во многие устройства: от часов и калькуляторов до музыкальной аппаратуры. В 1990-х предприятия энергоснабжения начали применять фотоэлементы для обеспечения мелких потребностей пользователей. Фотоэлектрические установки качают воду, обеспечивают ночное освещение, заряжают аккумуляторы, подают электричество в общую энергосистему и т. д. Они работают в любую погоду. При переменной облачности они достигают 80% своей потенциальной производительности; в туманную погоду около 50%, и даже при сплошной облачности они вырабатывают до 30% энергии.

Преимущества солнечной энергетики общедоступность и неисчерпаемость источника. Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки. Зависимость от погоды и времени суток. Фотоэлектрические преобразователи работают днём и с меньшей эффективностью работают в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, производимая ими электроэнергия может резко и неожиданно колебаться из-за смены погоды.

Глава 2. Основные виды солнечных батарей

Фотовольтаикаметод выработки электрической энергии путем использования фоточувствительных элементов для преобразования солнечной энергии в электричество. В солнечной энергетике для получения электрической энергии широко применяют фотоэлектрические преобразователи (ФЭП). Несколько соединенных между собой преобразователей образуют солнечную батарею.

2.1. Принцип работы

фотоэлектрических преобразователей

В основе работы фотоэлектрического преобразователя лежит фотоэффектпреобразование энергии электромагнитного излучения в электрическую энергию. Сущность фотоэффекта состоит в том, что электроны, содержащиеся в каком-либо веществе (твердом, жидком или газообразном), под действием фотонов падающего излучения приобретают энергию, позволяющую им изменять свое энергетическое состояние. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи, поскольку это прямой, одноступенчатый переход энергии. К полупроводниковым относят материалы, у которых ширина запрещенной зоны (энергия, необходимая для перехода электрона из зоны валентности в зону проводимости) характеризуется значениями от 0 до 6 эВ. При создании гетероструктур может использоваться два, три и более полупроводника, которые компонуются определенным образом. По классификации полупроводниковых материалов иногда особо выделяют узкозонные полупроводники (ширина запрещенной зоны менее 0,3 эВ) и широкозонные полупроводники (ширина запрещенной зоны более 2 эВ.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3