Однако если мы добавим отсутствующие данные по запускам, при которых не наблюдалось критических состояний уплотнительных колец, то получим совсем иную картину, изображенную на рис. 1, b. И закономерность становится очевидной. Фактически все запуски, которые произошли при температуре ниже 65 ºF, приводили к критическому состоянию уплотнительных колец, и лишь 4 из 21 запуска, осуществленных при более высоких температурах, дали подобный результат. На диаграмме четко видна закономерность чем ниже температура, тем выше риск. И что еще хуже, прогнозируемая температура была намного ниже минимальной, при которой ранее проводились запуски (DD-тип 15: экстраполяция за пределы ваших данных).
Отсутствующие данные имеют решающее значение для понимания происходящего.
В истории Challenger, однако, остался один загадочный момент. Хотя официальному расследованию потребовался не один месяц, чтобы сделать выводы о причинах аварии, цена акций Morton Thiokol упала на 11,86 % прямо в день катастрофы. При этом изменения цены акций компании даже на 4 % были редкостью. Котировки акций других компаний, принимавших участие в создании ракеты-носителя, также упали, но существенно меньше. Такое ощущение, что рынок знал о настоящей причине аварии. Неужели снова темные данные?
Сила темных данных
Этот последний пример показывает, насколько катастрофическими могут стать ситуации, когда не обращают внимания на темные данные. А они, по всей видимости, представляют реальную опасность. Однако картина все же не настолько мрачная. Оказывается, само осознание факта существования темных данных уже может дать нам преимущество. Что-то вроде принципа дзюдо для науки о данных; и в этом дзюдо есть конкретные приемы, которые я опишу в части II книги, а пока просто назову несколько из них.
В главе 2 пойдет речь о так называемых рандомизированных контролируемых исследованиях. В главе 9 мы вновь вернемся к ним, но рассмотрим с иного ракурса. Для примера возьмем медицинские исследования, когда сравнивают два метода лечения и при этом назначают их двум группам пациентов. Однако просто разделить людей на группы недостаточно. Если известно, кому какое лечение назначено, это может повлиять на результаты исследователи могут относиться к одной из групп более внимательно, чем к другой. Например, когда сравнивают новый непроверенный метод лечения со стандартным, исследователи, порой даже не осознавая этого, склонны тщательнее отслеживать побочные эффекты и проводить измерения в первой группе. Чтобы преодолеть эту потенциальную необъективность, в подобных исследованиях распределение методов лечения скрывают от исследователей (DD-тип 13: намеренно затемненные данные). В таких случаях говорят о слепом исследовании, чтобы указать на темные данные.
Другой хорошо известный метод, использующий темные данные, выборочные опросы. Возможно, мы захотим узнать мнение горожан или покупателей конкретной продукции, но выяснять мнение всех без исключения слишком затратно. К тому же это занимает много времени, и мнения могут измениться. Альтернативой тотальному опросу является опрос отдельных представителей группы. Мнения тех, кто не попадает в наш опрос, и будут темными данными. Вроде бы такая стратегия выглядит рискованно она явно напоминает историю с базой данных TARN. Но оказывается, что, используя продуманные методы отбора людей для опроса, мы можем получить точные и достоверные ответы, при этом быстрее и дешевле, чем если бы обращались к каждому.
Третий способ заставить темные данные работать на нас заключается в так называемом сглаживании данных. В главе 9 мы увидим, что этот метод сродни выявлению незамеченных и не поддающихся наблюдению видов темных данных (DD-тип 14: фальшивые и синтетические данные) и позволяет получить более точные оценки и прогнозы.
Другие способы использования темных данных, которые носят весьма экзотические названия, мы также рассмотрим в главе 9. Некоторые из них широко применяются в таких областях, как машинное обучение и искусственный интеллект.
Всюду вокруг нас
Как мы видим, темные данные вездесущи. Они могут появляться повсеместно и где угодно, а их наиболее опасное свойство заключается в том, что мы по определению не можем быть уверенными в их отсутствии. Это означает, что необходимо постоянно быть начеку и задавать себе вопрос: «Что мы упускаем?»