Сен Гук Ким - Элементы стр 4.

Шрифт
Фон

3. Двумерная числовая таблица 8 × 15

Здесь также 120 чисел. Но 8-ми разрядный «октавный Закон» Ньюлендса был математическим законом Периодической Таблицы химических элементов до 1989 года. Поэтому и мы будем ожидать высокой периодичности во множестве химических элементов в таблице 8 × 15. На рисунке ниже представлена таблица 8 × 15 химических элементов.


Рис. 7. Таблица 8 × 15 химических элементов


Повторяющихся строк 9 из 15 или 72 химических элемента из 118. Это составляет 61 %. Действительно большой процент периодизуемости. Но до 100 % далеко.

Если первые 14 химических элемента вынести за пределы таблицы, то получим:


Рис. 8. Таблица 8 × 15 с вынесенными за пределы таблицы первыми 14 химическими элементами


Здесь мы имеем 11 периодизирующихся рядов, т. е. 88 из 118 химических элементов. Это составляет около 74,6 %, что выше предыдущего случая на 13,6 %. Хорошая периодизируемость, но также далека от 100 процентной.

4. Двумерная числовая таблица 16 × 8

16-разрядную таблицу рассматриваем в связи с тем, что она кратна 8-ми разрядной таблице, а на 8-ми разрядной таблице достигли максимальной периодичности в 74,6 %. В этом случае в таблице 128 числовых элементов. Таблица химических элементов для этого случая:


Рис. 9. Таблица 16 × 8 химических элементов


Элементы 121128 относятся к следующему за f-бло-ком g-блоку ожидаемых химических элементов. Но их пока нет. Поэтому химических элементов и в этом случае только 118. В такой таблице имеются 4 периодизи-рующихся рядов, и в них 64 химических элемента. Они составляют примерно 54,23 %. Это намного меньше максимального 74,6 %. Уменьшать или повышать далее разрядность таблиц смысла не имеет. Мы получили весь диапазон «хорошей» периодизируемости химических элементов. К искомому результату 100 %-му охвату всех химических элементов не подошли и близко.

Вывод: разрядность чисел не может служить основой систематизации химических элементов. Следует искать другие закономерности.

5. Специальное распределение натуральных чисел

1. Квадрат натуральных чётных чисел (2n)2 при n = 1; 2; 3; 4:


(2n)2 = 4; 16; 36; 64 (1)


2. Квадрат любого числа n равен сумме последовательных нечётных чисел:


n2 = Σ(2n 1) (2)


Это подтверждается последовательной подстановкой каждого из n = 1; 2; 3; 4:


Σ(2n 1) = 1; 1 + 3; 1 + 3 + 5; 1 + 3 + 5; 1 + 3 + 5 + 7


Тогда: (2n)2 = 2[2(1); 2(1 + 3); 2(1 + 3 + 5); 2(1 + 3 + 5 + 7)], (3)


и


(2n)2 = 2(2n2) = 2(2; 8; 18; 32) (4)


Получились числовые сдвоенности Диады из числовых Монад: 2; 8; 18; 32.

Просуммируем все Диады (4) с учётом (2), (3) и правила: «от перестановки мест слагаемых сумма не изменяется».


Σ2(2n2) = 2Σ2Σ(2n 1) = 2{2[(1) + (1 + 3) + (1 + 3 + 5) + (1 + 3 + 5 + 7)]} = 2(2) + 2(2 + 6) + 2(2 + 6 + 10) + 2(2 + 6 + 10 + 14) = 2(2) + 2(6 + 2) + 2(10 + 6 + 2) + 2(14 + 10 + 6 + 2)


Полученный результат представляет полное количество KD чисел в четырёх Диадах из пар (2 перед скобками) Монад, которые состоят последовательно из 1, 2, 3, 4 слагаемых (в скобках). В сумме они составляют:


KD = 2(2) + 2(6 + 2) + 2(10 + 6 + 2) + 2(14 + 10 + 6 + 2) = 120 (5)


С учётом (3) формулу (4) можно записать как последовательность количества KN номеров N в Монадах последовательности n = 1; 2; 3; 4 Диад:


KN = 2(2n2) = 2Σ2(2n 1) = 2[2(1), 2(3 + 1), 2(5 + 3 + 1), 2(7 + 5 + 3 + 1)] (6)


Произведя суммирование и раскрытие скобок в правой части формулы (6), получим распределение количества KN номеров N в n = 1; 2; 3; 4 Диадах:



Это именно количества номеров, которые не обязательно должны следовать по определённому нарастающему порядку в монадах. Номера же должны последовательно нарастать. Номера N, в отличие от KN по формуле (6), должны выстраиваться в последовательных монадах 14 Диад по этой же простой формуле:


N = 2Σ2(2n 1), (7)


но в последовательно нарастающем порядке от 1 до 120.

Все значения KN чётные. Поэтому можно построить геометрическое воплощение формул (5) и (6) в виде вертикально-симметричной последовательности 20-ти рядов ячеек-квадратиков 8-ми Монад для 1-120 номеров N в n = 1; 2; 3; 4 Диадах-Уровнях сверху вниз:


Рис. 10. Вертикально-симметричное 4-Уровневое распределение ячеек-квадратиков для 1-120 номеров в 20-ти рядах 8-ми Монад по формуле (6)


Ряды 1, 2,4, 6, 9,12,16, 20 состоят из 2 ячеек, ряды 3, 5, 8, 11, 15, 19 из 6 ячеек, ряды 7,10, 14, 18 из 10 ячеек, ряды 13, 17 из 14 ячеек. В целом форма с ячейками напоминает ветвистую Ёлку. Ряды с двумя ячейками выглядят стволом Ёлки. Очевидно, ствол отличается от ветвей. И первые ветви Уровней n = 2; 3; 4 отличаются друг от друга. Таким образом, Ёлка составлена из ствола и трёх разных ветвей. Эти очевидные различия отразим тонами серой шкалы (gray scale).

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3