20 40 55 движение чисел, их увеличение в двоичном акте
30 50 45 это обозначение движения чисел, их увеличения и уменьшения в троичном акте
Результат это фикция, главное принцип. Для практических нужд промышленности или экономики результат также не имеет значения, результат в старом смысле. В подлинном новом смысле результат это выявление принципа с натуральными объёмами характеристик.
2+2=4 это фикция (но кое-где нужная, для детей на начальном этапе постижения математики и арифметики, например)
2
+
2
=
3 элемента с двумя похожими характеристиками и одной связующей (+) характеристикой, которые геометрически «зависают», и стремятся к самозакольцованной структуре.
В 3D видении это плавающие прямоугольные содержания, которые могут служить крепкой физической нормированной субстратной функцией и уплотнением.
Математический реализм
Мы должны установить, что число имеет вписанность, что число не является независимым аргументом, что число есть изначальность, которая имеет числовую прелюдию и числовые следствия (следствие).
Это означает, что любое число может иметь и должно иметь решение уже только потому, что оно является действительным числом.
Почему мы можем знать, что 0 есть -1 и +1 решение? Потому что элементарная таблица умножения, всеми признанная имеет такое же значение единичного состава, это следует из того, что 1*2=2 или 2*2=4, или 4*3=12. Что производят эти умножения? Они производят операцию данных чисел на двиочный код. Здесь только два действия: состав данных и операция.
Но это отчуждение числа. Потому что умножение не является базовой характеристикой мира. Базовой характеристикой является сложение и вычитание. И потому реальное число и реальное вычисление имеет операцию в уравнении или примере сложения данных каждого числа со следующим парным по порядку числом в уравнении или примере.
Реализмом мы это можем назвать потому, что показывает данное реальную окрестность решения, которую можно перенести на график координатной прямой и выявить фигуру. Это тем более важно, потому что позволяет найти в физике, генетике, морфологии и биологии, и других дисциплинах подвижную функцию, а не точечное статичное число.
Также из геометрических фигур можно уже геометрическим методом выводить данную вписанность и следствия вписанности.
Также может быть применена 3D-метрия к любому из видов перечисленных математических операций.
В мировоззренческом смысле это означает, что мы можем проводить решения только уже начатые и только которые закончатся следующим аналоговым продолжением.
Если мы говорим о причине Бога, то должны сказать, что на языке математики он выводится как раз из реальных вычислений, которые не сразу очевидны.
Математика это наука, которая теперь может быть в практике естествознания себя проявить.
О третьей переменной в математике
Третья переменная это следующая за первой переменной, которая есть описание процесса в формах внешней логики математика до 17 века, в том числе Евклидова геометрия, до Ньютона-Лейбница; следующая за второй переменной, которая есть в обобщённом смысле дифференциальная и интегральная математика, в которой дифференциал это простые операции до бесконечного множества, а интеграл сравнивается с производной и первообразной, а также другие сложные структуры, то, что помогло Галуа создать алгебру и ввело всякие уравнения, функции, графики и обслуживающую математику современного типа; переменной же третьего типа является такая переменная в математике, которая произвольно создана, но до кратного размера величины в три операции, которые её характеризуют как на графике, так и в числовом выражении, которая должна быть объяснена средствами математики первых двух видов. Это произвольно говоря может быть 2 в степени 2, в степени 2 и в степени 2 (пример лёгкого решения), а может быть троичность другого сложного типа произвольный эллипс, который имеет внутри себя треугольник и описывается тремя точками вне треугольника и эллипса со значениями 34, 56, 76, и нужно вычислить состояние фигуры. Такой пример может быть взят для того, чтобы понять природу геодезической линии окружности, но через влияние внешних факторов разных величин вне окружности.
Третью переменную в математическом дискурсе дискуссивного характера можно отнести к разделу математики анализу. Теория анализа сложных систем, если более точно. Но в то же время есть третья переменная будет введена в топологию или в теорию вариационных уравнений, это также будет приемлемо, как и для любой другой теории. Обозначение же третьей переменной я предлагаю следующее «T» (THREE).