Тонические нейромоторные единицы характеризуются следующими признаками:
1) в них генерируется местное возбуждение;
2) образованы мелкими мотонейронами;
3) аксоны мотонейронов нервные волокна группы А;
4) аксоны образуют до нескольких десятков синапсов, за счет чего может возникать суммация нервных импульсов и развиваться импульсное возбуждение;
5) участвуют в поддержании тонуса мускулатуры, а также медленных, длительных сокращений скелетных мышц;
6) не реагируют на одиночный нервный импульс, для их возбуждения необходима серия импульсов.
Физиологические свойства скелетных мышц:
1) возбудимость ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала;
2) проводимость низкая, порядка 1013 м/с;
3) рефрактерность занимает по времени больший отрезок, чем у нервного волокна;
4) лабильность;
5) сократимость способность укорачиваться или развивать напряжение.
Различают два вида сокращения:
а) изотоническое сокращение изменяется длина, тонус не меняется;
б) изометрическое сокращение изменяется тонус без изменения длины волокна.
Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов;
6) эластичность способность развивать напряжение при растягивании.
Физиологической особенностью сердечной мышцы является ее автоматизм возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.
Ультрамикроструктура мышечного волокна
Скелетные мышцы состоят из отдельных миофибрилл телец толщиной от 0,5 до 2 нм, а длиной до 23 см. Миофибриллы образованы сократительными белками актином и миозином и имеют поперечную исчерченность.
2. Механизмы мышечного сокращения и расслабления
Электрохимический этап мышечного сокращения
1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина с холинорецепторами приводит к их активации и появлению потенциала действия, что является первым этапом мышечного сокращения.
2. Распространение потенциала действия. Потенциал действия распространяется внутрь мышечного волокна по поперечной системе трубочек, которая является связывающим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна.
3. Электрическая стимуляция места контакта приводит к активации фермента и образованию инозилтрифосфата, который активирует кальциевые каналы мембран, что приводит к выходу ионов Ca2+ и повышению их внутриклеточной концентрации.
Хемомеханический этап мышечного сокращения
Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории:
1) ионы Ca2+ запускают механизм мышечного сокращения;
2) за счет ионов Ca2+ происходит скольжение тонких актиновых нитей по отношению к миозиновым.
В покое, когда ионов Ca2+ мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательные заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca2+ происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca2+:
1) Ca2+ реагирует с трипонином;
2) Ca2+ активирует АТФ-азу;
3) Ca2+ снимает заряды с АДФ, АТФ, АТФ-азы.
Взаимодействие ионов Ca2+ с тропонином приводит к изменению расположения последнего на актиновой нити, открываются активные центры тонкой протофибриллы. За счет них формируются поперечные мостики между актином и миозином, которые перемещают актиновую нить в промежутки между миозиновой нитью. При перемещении актиновой нити относительно миозиновой происходит сокращение мышечной ткани.
Итак, главную роль в механизме мышечного сокращения играют белок тропонин, который закрывает активные центры тонкой протофибриллы и ионы Ca2+.
Мышечное расслабление, как и сокращение, активный процесс, для чего необходима энергия АТФ.
1. Мышечное расслабление осуществляется за счет распада кальциевых мостиков, что происходит в результате уменьшения количества ионов Ca2+ в межфибриллярном пространстве. Ионы Ca2+ путем активного транспорта возвращаются в саркоплазматическую сеть за счет деятельности кальциевого насоса.