Александр Леонидович Чекин - Обучение младших школьников математике по учебно-методическому комплекту «Перспективная начальная школа» стр 4.

Шрифт
Фон

В состав разработанного учебно-методического комплекта входят и методические пособия для учителя [75, 76, 77, 78], в которых даны методические рекомендации по работе с соответствующим учебником. Структура этих пособий такова, что учителю сначала предлагается познакомиться с общими методическими рекомендациями по развитию основных содержательных линий курса в данном учебном полугодии. При этом рассмотрение материала именно по учебным полугодиям продиктовано соответствующей структурой учебников: каждая часть учебника для данного класса рассчитана на работу в одном учебном полугодии. После этого учитель имеет возможность получить рекомендации по изучению интересующей его темы и по работе с каждым отдельным заданием, которое входит в систему заданий по изучению данной темы. Кроме этого, в методическое пособие включен фрагмент программы для данного класса, а также требования к учащимся, оканчивающим данный класс. Методические пособия к учебникам 24 классов содержат также примерные варианты письменных контрольных работ, которые планируется проводить в конце каждой учебной четверти.

Кроме учебника и методического пособия для учителя в состав учебно-методического комплекта входят тетради для самостоятельной работы и материал для проведения мониторинга усвоения курса. Мы не будем подробно анализировать эти материалы, так как они полностью согласованы с учебником и выполняют обслуживающую функцию. С точки зрения поставленной нами проблемы эти материалы ничего нового не дают.

Глава I. Общая характеристика курса

1.1. Пояснительная записка к программе по математике для четырехлетней начальной школы

Программа курса разработана на основе Федерального государственного образовательного стандарта начального общего образования второго поколения с учетом межпредметных и внутрипредметных связей, логики учебного процесса, задачи формирования у младшего школьника умения учиться.

Предлагаемый начальный курс математики имеет целью:

 математическое развитие младшего школьника: использование математических представлений для описания окружающей действительности в количественном и пространственном отношении; формирование способности к продолжительной умственной деятельности, основ логического мышления, пространственного воображения, математической речи и аргументации, способности различать верные и неверные высказывания, делать обоснованные выводы;

 освоение начальных математических знаний. Формирование умения решать учебные и практические задачи математическими средствами: вести поиск информации (фактов, сходства, различий, закономерностей, оснований для упорядочивания и классификации, вариантов); понимать значение величин и способов их измерения; использовать арифметические способы для разрешения сюжетных ситуаций (строить простейшие математические модели); работать с алгоритмами выполнения арифметических действий, решения задач, проведения простейших построений. Проявлять математическую готовность к продолжению образования;  воспитание критичности мышления, интереса к умственному труду, стремления использовать математические знания в повседневной жизни.

Таким образом, предлагаемый начальный курс математики призван не только ввести ребенка в абстрактный мир математических понятий и их свойств, охватывающий весь материал, содержащийся в примерной программе по математике в рамках Федерального государственного образовательного стандарта начального общего образования второго поколения, но и дать первоначальные навыки ориентации в той части реальной действительности, которая описывается (моделируется) с помощью этих понятий, а именно: окружающий мир как множество форм, как множество предметов, отличающихся величиной, которую можно выразить числом, как разнообразие классов конечных равночисленных множеств и т. п., а также предложить ребенку соответствующие способы познания окружающей действительности.

Основная дидактическая идея курса может быть выражена следующей формулой: «через рассмотрение частного к пониманию общего для решения частного». При этом ребенку предлагается постичь суть предмета через естественную связь математики с окружающим миром. Все это означает, что знакомство с тем или иным математическим понятием осуществляется при рассмотрении конкретной реальной или псевдореальной (учебной) ситуации, соответствующий анализ которой позволяет обратить внимание ученика на суть данного математического понятия. В свою очередь, такая акцентуация дает возможность добиться необходимого уровня обобщений без многочисленного рассмотрения частностей. Наконец, понимание общих закономерностей и знание общих приемов решения открывает ученику путь к выполнению данного конкретного задания даже в том случае, когда с такого типа заданиями ему не приходилось еще сталкиваться. Логико-дидактической основой реализации первой части формулы является неполная индукция, которая в комплексе с целенаправленной и систематической работой по формированию у младших школьников таких приемов умственной деятельности, как анализ и синтез, сравнение, классификация, аналогия и обобщение, приведет ученика к самостоятельному «открытию» изучаемого математического факта. Вторая же часть формулы носит дедуктивный характер и направлена на формирование у учащихся умения конкретизировать полученные знания и применять их к решению поставленных задач.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3