Various - The Atlantic Monthly, Volume 06, No. 33, July, 1860 стр 6.

Шрифт
Фон

The influence of man upon rain is seen in the progress of civilization, the destruction of forests, and the drying-up of meres, swamps, and water- courses.

Forests undoubtedly affect the distribution of rain, and the supplies of streams and springs. Their cooling influence precipitates the vapor passing over them, and the ground beneath them not getting heated does not readily evaporate moisture. Lands, on the contrary, which are cleared of forests become sooner heated, give off larger quantities of rarefied air, and the passing clouds are borne away to localities of greater atmospheric density.

The Canary Islands, when first discovered, were thickly clothed with forests. Since these have been destroyed, the climate has been dry. In Fuerteventura the inhabitants are sometimes obliged to flee to other islands to avoid perishing from thirst. Similar instances occur in the Cape Verdes. Parts of Egypt, Syria, and Persia, that once were wooded, are now arid and sterile deserts.

In the temperate zones these results are not so immediately apparent. It is now much in doubt whether the climate of our country has changed its character within the last two hundred years. Jefferson and Dr. Rush both contended that it had. Our oldest inhabitants assert that in their day our winters began nearly two months earlier than they do now.

The general laws laid down in relation to rain are these:

1. It decreases in quantity as we approach the poles.

2. It decreases as we pass from maritime to inland countries.

3. It decreases in the temperate zones on eastern coasts as compared with western coasts, but within the tropics it is the reverse.

4. More rain falls in mountainous than in level countries.

5. Most rain falls within the tropics.

The rainless regions, not deserts, are parts of Guatemala, the table-land of Mexico, the Peruvian coast, parts of Morocco, Egypt, Arabia, Persia, etc.

The electric character of the air is another subject of interest, and a leading one in Meteorology. What can be more magnificent, what more awful, than those storms of lightning and thunder which are witnessed sometimes even in our own latitudes?

Faraday, who as a chemist and philosophical writer is of the highest authority, professes to have demonstrated that one single gram of water contains as much electricity as can be accumulated in eight hundred thousand Leyden jars, each requiring to charge it thirty turns of the large machine at the Royal Institution.

It is not intended that this astounding statement should be received without some grains of allowance; but a very elegant and scientific writer, who adopts it without hesitation, adds, "We can from this crystal sphere [of water] evoke heat, light, electricity in enormous quantities, and beyond these we can see powers or forces for which, in the poverty of our ideas and our words, we have not names."

Flashes of electricity have been detected, during warm, close weather, issuing from some species of plants. The Tuberose and African Marigold have been seen to emit these mimic lightnings. (Goethe is the authority for this.) To atmospheric electricity we doubtless owe the coruscations of the Aurora, one of the most beautiful of our meteors.

The usual forms of lightning are the zigzag or forked sharply defined,the sheet-lightning, illuminating a whole cloud, which it seems to open,heat- lightning, not emanating from any cloud, but apparently diffused through the air and without report. There are also fireballs which shoot across the sky, leaving a train often visible for seconds and minutes. These last, when they project any masses to the earth, are termed aërolites.

Atmospheric electricity has much to do with the distribution of rain, the precipitation of vapor, the condition of our nervous system, and, according to Humboldt, with the circulation of the organic juices. Atmospheric electricity has heretofore been a great obstacle to the success of the Magnetic Telegraph, and curiously disturbs its operation; but there has recently been invented an instrument called a Mutator, which is connected with the wires, and carries off all the disturbing influences of the atmosphere without interfering with the working current. On the other hand, artificially created electricity has led to important advances in many of the arts and sciences.

Ice is water frozen under a very curious and peculiar law. Hail is the congelation of drops of rain in irregular forms, always sudden,by some attributed to electricity and currents of air violently rarefied by it, and by others to rain-drops falling through a cold stratum of air and suddenly congealed. Snow, the ermine of the earth, is the crystallized moisture of the air, and is in subjection to unchanging laws.

Water contracts as it grows colder, until it falls in temperature to 42°. It then expands till it reaches 32°, when it becomes solid, though its density is actually diminished, and its specific gravity is reduced to .929, while that of unfrozen water is 1.000. Of course it is much lighter, and it floats. This admirable arrangement prevents our rivers being frozen up and our lakes becoming solid. Ice thickens because it is porous, and allows the heat of the water to pass up and the cold to descend; but this is happily a slow process, as ice is a bad conductor. Salt water freezes at the temperature of 7°, 25° below freezing- point. There are many things to be said about ice, whether as glaciers, or Arctic bergs, or, as it is found sometimes, contrary to its general law, at the bottom of rivers and ponds, its geological movements in the transportation of boulders, and as an article of luxury;but we are compelled to leave them for the present.

Snow, which, in its crystallization, surpasses the most perfect gems, is invariably found arranged in determinate angles, to wit, 60°, and its double, 120°, and formed of six-sided prisms. More than one hundred kinds have been described by Dr. Scoresby and others, and all these are combinations of the six- sided prism. The uses of snow, from its non-conducting qualities, whether as appreciated by the Esquimaux as a material for huts, or by the agriculturists of our own climate as sheltering the seed, are too well known to require any particular remarks. Strange as it may appear, the proximate cause of the formation of snow is not yet fully agreed upon by the learned.

The connection between Sound and the atmosphere is an important one. The air is a conductor of sound, and in some conditions one of the best. A bell rung in an exhausted receiver gives no sound. In the Arctic regions ordinary conversations have been distinctly heard for the distance of a mile and a half.

All that we have thus far said in this article bears directly, in some form or other, on another of the great features of Meteorology, one of its great objects, and an unceasing topic,namely, Climate.

The term Climate, in its general sense, indicates the changes and condition of the atmosphere, such as we have been considering. It has something to do with all of them; it is not entirely controlled by any. Thus, places having the same mean annual temperature often differ materially in climate. In some (we quote Mrs. Somerville) the winters are mild and the summers cool, whereas in others the extremes of heat and cold prevail.

Climates are not found coincident with lines of latitude; they are quite as often found parallel to lines of longitude. If you connect the extreme points of the mean annual temperatures by a line passing round the earth, you have a zone, but never a true circle. The curves are longitudinal.

Climate is dependent on temperature, winds, the elevation of land, soil, ranges of mountains, and proximity of bodies of water; and it is also the expression, if we may so term it, of the changes in the atmosphere sensibly affecting our organs. Humboldt refers it to humidity, temperature, changes in barometric pressure, calmness or agitation of the air, amount of electric force, and transparency of the sky.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3