Томас Фридман - Расслабься. Гениальное исследование о том, как вовремя взятая пауза в разы увеличивает ваши результаты стр 9.

Шрифт
Фон

Здесь Теллер вернулся к графику и нарисовал пунктирную линию, которая поднималась вдоль линии адаптируемости, но круче. Эта линия обозначает более быстрое и эффективное обучение и поэтому пересекается с линией технологических и научных изменений в более высокой точке.

По словам Теллера, повышение адаптивности человечества на 90 % означает «оптимизацию обучения»  то есть применение мер, стимулирующих технологические инновации в нашей культуре и социальных структурах. Каждое учреждение, будь то патентное ведомство (значительно улучшившееся за последние годы) или другой правительственный регулирующий орган, должно становиться всё более гибким. Им следует быть готовыми быстро экспериментировать и учиться на ошибках. Вместо того чтобы ждать, будто новые правила станут действовать десятилетиями, надо постоянно проводить переоценку способов, которыми они служат обществу. Сейчас университеты гораздо чаще пересматривают учебные программы, чтобы успевать за темпами изменений, порой даже устанавливают «дату применимости» для определённых курсов. Регуляторам стоит придерживаться аналогичного подхода. Им нужно быть столь же инновационными, как и новаторы, и действовать со скоростью закона Мура.

 Инновации,  полагает Эрик Теллер,  это цикл экспериментов, обучения, применения знаний, а затем оценки успехов или неудач. Когда результатом становится неудача, здесь просто повод начать цикл заново.

Один из девизов X«быстро провалиться». Теллер говорит подчинённым:

 Мне всё равно, насколько вы продвинетесь в этом месяце. Моя работа состоит в том, чтобы повысить ваш уровень эффективностикак мы можем совершить ту же ошибку за половину времени и за половину денег?

В целом, считает Теллер, то, что мы переживаем сегоднявсё более короткие циклы инноваций и всё меньшее время для обучения и адаптации,  «это разница между постоянным состоянием дестабилизации и случайной дестабилизацией». Время постоянной стабильности прошло. Что не означает, будто у нас не может быть нового типа стабильности. Другое дело, что она должна быть динамичной.

 Есть несколько способов удержаться на велосипеде, пока вы стоите на месте, но когда вы двигаетесь, всё гораздо проще. Пусть это состояние кажется нам неестественным, но человечеству придётся научиться существовать в таком движении.

Нам всем придется научиться этому трюку езды на велосипеде.

 Когда такое произойдёт,  уверен Теллер,  странным образом мы снова окажемся спокойными. Тем не менее это потребует существенного переучивания. Мы определённо не учим наших детей динамической стабильности. Придётся учить их этому всё интенсивнее и быстрее, чтобы будущие поколения процветали и находили собственное равновесие.

Следующие четыре главы посвящены основополагающим ускорениям в законе Мура, рынке и матери-природе, которые определяют, как сегодня работает «машина». Если мы собираемся достичь динамической стабильности, о которой говорит Теллер, то должны понять, как эти силы изменяют мир и почему стали особенно динамичными начиная с 2007 года.

Глава 3Закон Мура

«Жизни людей меняются, когда люди на связи. Когда связано всё, меняется сама жизнь».

Девиз Qualcomm

Одно из самых сложных понятий для осознаниясила экспоненциального роста. Оно касается всего, что происходит, когда какой-то параметр удваивается, утраивается или увеличивается в четыре раза на протяжении нескольких лет подряд. Сложно осознать, насколько большими могут быть получившиеся цифры. Поэтому всякий раз, когда генеральный директор Intel Брайан Кржанич пытается объяснить влияние закона Мура (что происходит, когда вы удваиваете мощность микрочипов каждые два года в течение 50 лет), он использует такой пример. Если вы взяли микросхему первого поколения 1971 года, 4004, и новейший чип Intel, представленный сегодня на рынкепроцессор Intel Core шестого поколения, то увидите, что новейший чип предлагает в 3500 раз больше производительности, в 90 000 раз больше энергоэффективности, а стоит примерно в 60 000 раз дешевле.

Для упрощения инженеры Intel сделали примерный расчёт того, что произошло бы, если бы Volkswagen Beetle 1971 года по закону Мура улучшался с той же скоростью, что и микрочипы. И вот итог: к сегодняшнему дню Beetle смог бы ехать со скоростью около 482 тысяч километров в час. Расход топлива составил бы 1,2 литра на миллион километров, а обслуживание стоило бы четыре цента! В Intel подсчитали также, что, если бы эффективность использования автомобильного топлива улучшалась со скоростью закона Мура, мы смогли бы, грубо говоря, водить всю жизнь автомобиль, не израсходовав и одного бака бензина.

Причина столь необычных сегодняшних технологических изменений таится в том, что их провоцирует не только вычислительная скорость микрочипов, находящаяся в устойчивом нелинейном ускорении, но и развитие остальных компонентов компьютера.

Сегодня каждое вычислительное устройство имеет пять основных компонентов:

(1) интегральные схемы, что производят вычисления;

(2) блоки памяти, которые хранят и извлекают информацию;

(3) сетевые системы, обеспечивающие связь внутри и между компьютерами;

(4) программные приложения, позволяющие разным компьютерам выполнять множество задач индивидуально и коллективно;

(5) датчикикамеры и иные миниатюрные устройства, способные обнаруживать движение, язык, свет, тепло, влажность и звук, преобразовывая любой из них в цифровые данные, которые могут быть переведены на «человеческий» язык, доступный для понимания.

Удивительно, но у закона Мура много «родственников» в других сферах. В этой главе будет показано, как устойчивое ускорение развития всех пяти компонентов, их объединение и эволюция в то, что мы теперь называем «облаком», привело нас на новый уровень развитияк точке, нарисованной «Астро» Теллером, где темпы технологических и научных изменений опережают скорость, с которой люди и общества обычно могут адаптироваться.

Гордон Мур

Начнём нашу историю с микрочипов, также известных как интегральные микросхемы, они же микропроцессоры. На этих устройствах работают все программы и память компьютера. Словарь подскажет нам, что микропроцессор похож на мини-вычислительный движок, построенный на одной кремниевой микросхеме, поэтому его сокращенно и называют «микрочип», или просто «микросхема». Микропроцессор состоит из транзисторовиными словами, крошечных переключателей. Они могут включать или выключать поток электричества. Вычислительная мощность микропроцессора зависит от того, насколько быстро транзисторы включаются и выключаются и сколько их вы можете разместить на одном кремниевом чипе. До изобретения транзистора первые компьютерные дизайнеры полагались на ламповые вакуумные трубки (подобные им вы могли видеть на задней панели старого телевизора). Они включали и выключали электричество для производства вычислений, но были очень медленными и сложными для сборки.

И вдруг летом 1958 года всё изменилось. Инженер из Texas Instruments Джек Килби «нашёл решение этой проблемы» (сообщает NobelPrize.org).

Идея Килби была в том, чтобы соединить все компоненты и чип в единый блок (монолит) из полупроводникового материала. В сентябре 1958-го у него была готова первая интегральная схема.

Сделав все детали блока из одного материала и добавив металл, необходимый для их соединения в виде поверхностного слоя, он избавился от необходимости в отдельных дискретных компонентах. Больше не нужно было собирать провода и компоненты вручную. Появилась возможность производить микросхемы меньшего размера, а весь процесс изготовления автоматизировать.

Полгода спустя другой инженер, Роберт Нойс, предложил собственную идею интегральной микросхемыона элегантно решает некоторые проблемы микросхемы Килби и позволяет беспрепятственно соединять все компоненты на одном кристалле кремния.

Так началась цифровая революция.

В 1957 году Нойс стал соучредителем Fairchild Semiconductor (а затем и Intel), созданной для разработки чипов, вместе с несколькими другими инженерами, в том числе Гордоном Э. Муром, который получил докторскую степень по физической химии в Калифорнийском технологическом институте и стал директором лаборатории по исследованиям и разработкам в Fairchild.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3

Популярные книги автора