Кроме того, можно создать магнитное поле. Об этом думали ещё во время первых полётов, но затея оказалась слишком уж фантастичной. Однако сейчас уже не очень: учёные додумались использовать не просто магнитное поле, а комбинацию из плазменного слоя, электрического и магнитного полей, так что в результате корабль окружается магнитоплазменным пузырём, поглощающим заряженные частицы. Примерно так:
Обшивкой назвать эту конструкцию сложно, но в любом случае онатакая же часть корабля.
Двигатель.
В 99 % случаев схема космического истребителя (да и дредноута тоже) напоминает схему классического реактивного самолёта, то есть двигатель расположен в хвосте и обладает только одним вектором направления тягивперёд. Вместо тысячи слов:
Возникает очевидный вопроса как, простите, эта штука управляется? Ладно ещё в атмосфере, там можно использовать аэродинамические поверхности, но в космосе воздуха нет и рули бесполезны. Поворачивать там в локальном масштабе нужно маневровыми двигателями, коих на артах обычно не наблюдается. Либо, если мы говорим об X-wings, такой вариант: снижать тягу на правых двигателях и повышать на левых, по аналогии с танком. Однако обеспечить маленький радиус разворота такой метод неспособен.
Давайте представим себе истребитель, который должен взорвать Звезду Смерти. Вот он подлетает к ней (предположим, операторы зенитных орудий поголовно маются похмельем и не замечают опасности) и должен повернуть, чтобы не врезаться в обшивку вражеского дредноута. Самолёт в такой ситуации ляжет набок и изменит угол тангажа с помощью рулей высоты, у космолёта же есть три варианта:
1. Активировать на короткое (строго определённое) время боковой двигатель, придав кораблю вращение. Двигатель должен быть не убогим ионником, а чем-нибудь помощнееот него требуется сообщить максимум импульса за минимум времени.
Когда же космолёт достигнет нужного угла, нужно активировать второй боковой двигатель, с другой стороны, чтобы погасить вращательный момент и выйти на новую траекторию.
2. Повернуть вектор тяги основного (маршевого) двигателя. Принцип тот же самыйсначала повернуть, сообщив вращение, потом повернуть в другую сторону, погасив это вращение. Обычно делается это с помощью сопла с изменяемой геометрией, как у самолётов с вертикальным взлётом.
3. Если у него два и больше двигателей, то по описанному выше методураспределить тягу асимметрично и создать крутящий момент, которые повернёт аппарат.
В остальном, однако, авиационная компоновка вполне нормальна для космоплана, неважно, летает ли он в атмосфере или нет.
Терморегуляция.
Поддержание постоянной температуры в изолированном пространствезадача достаточно нетривиальная, в первую очередь потому, что у космических кораблей большие проблемы с охлаждением. Да, вот такая фигня: несмотря на уж-жасный космический холод, корабль склонен скорее перегреваться, чем остывать.
Куда сбрасывать лишнее тепло и как? На Земле можно использовать естественный теплоносительвоздух. Энергия передаётся ему через контакт с поверхностью (поэтому радиаторы должны иметь как можно большую площадь), а атмосферная циркуляция уносит прочь нагретый воздух, нагоняя взамен холодный. Однако в космосе воздуха нет, теплообмена, соответственно, тоже, и охлаждаться корабль может только собственным излучением по закону Стефана-Больцмана, а это далеко не самый эффективный способ остыть.
Но выбирать не приходится, так что радиаторы конструируются именно под охлаждение излучением. Вот, например, эти устройства на МКС:
Стоит отметить, что если солнечные батареи всегда направлены перпендикулярно потоку солнечного света, то радиаторы нужно направлять параллельно емучтобы они не перегревались.
Равновесная температура на земной орбите, то есть баланс между получаемым от солнца теплом и собственным излучением, равна примерно 279 К, или 6 С (для абсолютно чёрного тела, т. е. такого, которое поглощает всё получаемое тепло и ничего не отражает). Но это в случае, если мы рассматриваем какой-нибудь камень или мёртвую тушку космонавта, в которых не происходит никаких экзотермических процессов, на корабле же имеется тысяча и один источник теплаживые тушки космонавтов, энергоустановка, электросистемы и так далее. В конечном итоге КПД всей этой системы едва достигает 25 %это означает, что из четырёх закинутых в топку биг-маков лишь один используется для освещения, разгона, электропитания компьютеров и так далее, а остальные превращаются в тепло и нагревают корабль. Как перегнать это тепло в радиаторы? Использовать хладагент, вещество-теплоноситель.
В сущности, вся МКСэто один большой холодильник, где вода во внутреннем контуре охлаждается аммиаком во внешнем, после чего нагретый аммиак отправляется в радиаторы. Те, в свою очередь, пронизаны множеством трубочек, по которым он циркулирует, отдавая тепло внешней оболочке, а уже оттуда оно рассеивается в космос. Температура радиаторов составляет примерно 10013 °C.
Совершенно очевидно, что в случае Звезды Смерти потребуются огромные площади охлаждающих панелей, и ещё более очевидно, что панели эти будут очень уязвимы перед нападением подлого врага. Ну в самом деле, одна ракета в основаниеи целый пласт радиаторов улетает в космос. Да что там в основание, можно тем же ведром гаек продырявить панели, рассечь трубочки, и хладагент потечёт наружу. Он же ещё и под давлением, причём на МКС давление аммиака10 атмосфер. Если шальная пуля пробьёт трубопровод, фонтан будет знатный.
Помните, какая жара стояла в помещении для Заряжающих из «Билл, герой галактики»? То-то же.
Решение этой проблемы лежит во всё том же законе Стефана-Больцмана. Интенсивность потери тепла излучением зависит от температуры, причём в четвёртой степени. Поэтому можно оставить радиаторы той же площади, но увеличить температуру хладагентаи мощность повысится в разы, а кроме того, охлаждающие панели начнут красиво светиться в космосе багровым цветом. Конечно, аммиак для этих целей уже не будет годиться, да и разогреть эту конструкцию до тысяч градусов сложновато, но вполне можно придумать хреноптаниум. Выглядеть это может примерно так:
Охлаждение при этом требуется не только МКС и Звезде смерти: шаттлы, например, в космосе всегда летали с открытыми створками грузовых отсековтам находились радиаторы. Однако в целом для маленького корабля в условиях отсутствия мощных тепловыделяющих систем на борту эта проблема стоит куда менее остро, особенно где-нибудь на орбите Юпитера, где солнце жарит не так сильно.
К сожалению, в фантастике понятие «радиатор» отсутствует полностью. Фактически я могу припомнить радиаторы только у Кларка в «Космической Одиссее» (мистер Кларк был тем ещё заклёпочником), да и то в фильме Кубрик их потерял, и в «Аватаре» Кэмерона (именно оттуда взята картинка выше). Зато сейчас в космофантастике очень часто пишут про тот самый космический холодя встречал рассказы, где сюжетообразующим элементом было мгновенное промерзание корабля из-за разгерметизации. Ну що тут можна сказати ¯\_()_/¯
Обеспечение гравитацией.
Забавно, но в фантастике практически всегда на кораблях существует искусственная гравитация, причём в 99 % случаев она создаётся неведомой фигнёйвещь эта настолько тривиальная, что об источнике гравитации многие авторы космоопер даже не упоминают. Есть и есть, какая разница? Книга-то о другом.
Если не рассматривать всякие чисто фантастические штуки, вариант тут один-единственныйиспользовать вместо гравитации центробежную силу инерции, то есть заставить корабль вращаться. Как несложно догадаться, вектор будет всегда направлен от центра вовне, причём чем ближе к оси вращения, тем меньше будет искусственная гравитация. Крайне кошерно это описано у Хайнлайна в «Пасынках вселенной», где на верхних палубах корабля поколений (на самом деле они внутренние, просто жители поднимаются к ним супротив силы тяжести) царит невесомость. Сам корабль представляет из себя вращающийся цилиндр, и большинство народу живёт ближе к ободу. При этом, по сути, на саму идею это никак не влияет, но до чего же круто смотрится!