В настоящее время химические источники токагальванические элементы и аккумуляторышироко применяются в электротехнике и электроэнергетике.
Другим основным источником тока, получившим широкое распространение во всех областях электротехники и электроэнергетики, являются генераторы.
Генераторы устанавливаются на электрических станциях и служат единственным источником тока для питания электроэнергией промышленных предприятий, электрического освещения городов, электрических железных дорог, трамвая, метро, троллейбусов и т. д.
Как у химических источников электрического тока (элементов и аккумуляторов), так и у генераторов действие электродвижущей силы совершенно одинаково. Оно заключается в том, что эдс создает на зажимах источника тока разность потенциалов и поддерживает ее длительное время.
Эти зажимы называются полюсами источника тока. Один полюс источника тока испытывает всегда недостаток электронов и, следовательно, обладает положительным зарядом, другой полюс испытывает избыток электронов и, следовательно, обладает отрицательным зарядом. Соответственно этому один полюс источника тока называется положительным (+), другой принято называть отрицательным (-).
Источники тока служат для питания электрическим током различных приборовпотребителей тока. Потребители тока при помощи проводников соединяются с полюсами источника тока, образуя замкнутую электрическую цепь. Разность потенциалов, которая устанавливается между полюсами источника тока при замкнутой электрической цепи, называется напряжением. Таким образом, если в цепи нет напряжения, нет и тока.
Напряжение обозначается буквой U, а его единицей измерения, так же как и эдс, служит вольт. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре). Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.
Количество электричества и сила тока
Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количеством электричества, проходящего сквозь проводник.
Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с). В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А). Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.
Электрическое сопротивление
После подключения в электрическую цепь всевозможных проводников и амперметра можно заметить, что при использовании разных проводников амперметр выдает разные показания, т. е. в этом случае сила тока, имеющаяся в электрической цепи, разная. Это явление можно объяснить тем, что разные проводники имеют разное электрическое сопротивление, которое представляет собой физическую величину.
Немецкий физик Георг Ом (17871854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорционально напряжению U на концах проводника:
I = U/R,
где Rэлектрическое сопротивление проводника.
Это уравнение выражает закон Ома для участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
Участок цепи, в котором не действуют эдс (сторонние силы), называют однородным участком цепи, поэтому эта формулировка закона Ома справедлива для однородного участка цепи
Единицу измерения электрического сопротивления назвали Омом. Как правило, в физике применяются более крупные единицы: килоом, мегаом и пр. Сопротивление проводника зависит от его длиныL, площади поперечного сечения5 и материала проводника. В этом случае можно сопротивление записать в виде формулы
R = р × L/S,
где коэффициент р называется удельным сопротивлением матерала проводника. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м2. Удельное сопротивление выражается в Ом × м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом × мм2/м.
Удельные сопротивления некоторых материалов
Из этой таблицы следует, что среди проводников самое малое удельное электрическое сопротивление имеет медь, самое большоесплавы металлов. Материалы, обладающие таким большим удельным сопротивлением, которое препятствует протеканию тока, называются диэлектриками или изоляторами.
Электрическая емкость
Мы уже знаем, что два изолированных друг от друга проводника могут накапливать электрические заряды. Это явление характеризуется физической величиной, которую назвали электрической емкостью. Электрическая емкость двух проводниковне что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф). На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).
Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.
Электромагнитная индукция
В первой половине XIX в. английский физик М. Фарадей открыл явление магнитной индукции. Он установил, что если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет электродвижущая сила, называемая эдс индукции.
Эдс индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.
Если проводник, в котором наводится эдс индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой эдс по цепи потечет ток, называемый индукционным током.
Явление индуктирования эдс в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией.
Электромагнитная индукцияэто обратный процесс, т. е. превращение механической энергии в электрическую.
Явление электромагнитной индукции нашло широчайшее применение в электротехнике. На его использовании основано устройство различных электрических машин.
Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится эдс индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.
Величина и направление индуктированной в проводнике эдс зависят от нескольких факторов:
количества силовых линий поля, пересекающих проводник в единицу времени;
скорости движения проводника в магнитном поле;
длины той части проводника, которая пересекается силовыми линиями поля;