Будума Нихиль - Основы глубокого обучения стр 5.

Шрифт
Фон

Напомним механизм, с помощью которого логистические нейроны вычисляют выходные значения на основе входных:

Нейрон определяет взвешенную сумму входящих значений  логит z. Затем он передает этот логит в нелинейную функцию для вычисления выходного значения y. К счастью для нас, эти функции имеют очень красивые производные, что значительно упрощает дело! Для обучения нужно вычислить градиент функции потерь по весам. Возьмем производную логита по входным значениям и весам:

Кроме того, как ни удивительно, производная выходного значения по логиту проста, если выразить ее через выходное значение:

Теперь можно использовать правило дифференцирования сложной функции, чтобы вычислить производную выходного значения по каждому из весов:

Объединяя полученные результаты, мы можем вычислить производную функции потерь по каждому весу:

Итоговое правило изменения весов будет выглядеть так:

Как вы видите, новое правило очень похоже на дельта-правило, за исключением дополнительных множителей для учета логистического компонента сигмоидного нейрона.

Алгоритм обратного распространения ошибок

Теперь мы готовы приступить к проблеме обучения многослойных нейросетей, а не только одиночных нейронов. Обратимся к подходу обратного распространения ошибок, предложенному Дэвидом Румельхартом, Джеффри Хинтоном и Рональдом Уильямсом в 1986 году. В чем основная идея? Мы не знаем, что делают скрытые нейроны, но можем вычислить, насколько быстро меняется ошибка, если мы вносим корректировки в эти процессы. На основе этого мы способны определить, как быстро трансформируется ошибка, если изменить вес конкретного соединения. По сути, мы пытаемся найти наибольший уклон! Единственная сложность в том, что приходится работать в пространстве с очень большим числом измерений. Начнем с вычисления производных функции потерь по одному обучающему примеру.

Каждый скрытый нейрон может влиять на многие выходные нейроны. Нам нужно учесть несколько эффектов ошибки, чтобы получить нужную информацию. В качестве стратегии выберем динамическое программирование. Получив производные функций потерь для одного слоя скрытых нейронов, мы применим их для вычисления производных функций потерь на выходе более низкого слоя. Когда мы найдем такие производные на выходе из скрытых нейронов, несложно будет получить производные функций потерь для весов входов в скрытый нейрон. Для упрощения введем дополнительные обозначения (рис. 2.5).

Рис. 2.5. Справочная диаграмма для вывода алгоритма обратного распространения ошибок

Нижний индекс будет обозначать слой нейронов; символ y  как обычно, выходное значение нейрона, а z  логит нейрона. Начнем с базового случая проблемы динамического программирования: вычислим производные функции потерь на выходном слое (output).

Теперь сделаем индуктивный шаг. Предположим, у нас есть производные функции потерь для слоя j. Мы собираемся вычислить производные функции потерь для более низкого слоя i. Для этого необходима информация о том, как выходные данные нейрона в слое i воздействуют на логиты всех нейронов в слое j. Вот как это сделать, используя то, что частная производная логита по входящим значениям более низкого слоя  это вес соединения wij:

Далее мы видим следующее:

Сведя эти факты воедино, мы можем выразить производные функций потерь слоя i через производные функций потерь слоя j:

Пройдя все стадии динамического программирования и заполнив таблицу всеми частными производными (функций потерь по выходным значениям скрытых нейронов), мы можем определить, как ошибка меняется по отношению к весам. Это даст нам представление о том, как корректировать веса после каждого обучающего примера:

Наконец, чтобы завершить алгоритм, как и раньше, мы суммируем частные производные по всем примерам в нашем наборе данных (dataset). Это дает нам следующую формулу изменения:

На этом описание алгоритма обратного распространения ошибок закончено!

Стохастический и мини-пакетный градиентный спуск

В алгоритмах, описанных в предыдущем разделе, мы использовали так называемый пакетный градиентный спуск. Идея в том, что мы при помощи всего набора данных вычисляем поверхность ошибки, а затем следуем градиенту, определяем самый крутой уклон и движемся в этом направлении. Для поверхности простой квадратичной ошибки это неплохой вариант. Но в большинстве случаев поверхность гораздо сложнее. Для примера рассмотрим рис. 2.6.

Рис. 2.6. Пакетный градиентный спуск чувствителен к седловым точкам, что может привести к преждевременному схождению

У нас только один вес, и мы используем случайную инициализацию и пакетный градиентный спуск для поиска его оптимального значения. Но поверхность ошибки имеет плоскую область (известную в пространствах с большим числом измерений как седловая точка). Если нам не повезет, то при пакетном градиентном спуске мы можем застрять в ней.

Другой возможный подход  стохастический градиентный спуск (СГС). При каждой итерации поверхность ошибки оценивается только для одного примера. Этот подход проиллюстрирован на рис. 2.7, где поверхность ошибки не единая статичная, а динамическая. Спуск по ней существенно улучшает нашу способность выходить из плоских областей.

Рис. 2.7. Стохастическая поверхность ошибки варьирует по отношению к пакетной, что позволяет решить проблему седловых точек

Основной недостаток стохастического градиентного спуска в том, что рассмотрение ошибки для одного примера может оказаться недостаточным приближением поверхности ошибки.

Это, в свою очередь, приводит к тому, что спуск займет слишком много времени. Один из способов решения проблемы  использование мини-пакетного градиентного спуска. При каждой итерации мы вычисляем поверхность ошибки по некой выборке из общего набора данных (а не одному примеру). Это и есть мини-пакет (minibatch), и его размер, как и темп обучения,  гиперпараметр. Мини-пакеты уравновешивают эффективность пакетного градиентного спуска и способность избегать локальных минимумов, которую предоставляет стохастический градиентный спуск. В контексте обратного распространения ошибок изменение весов выглядит так:

Это идентично тому, что мы вывели в предыдущем разделе. Но вместо того чтобы суммировать все примеры в наборе данных, мы обобщаем все примеры из текущего мини-пакета.

Переобучение и наборы данных для тестирования и проверки

Одна из главных проблем искусственных нейросетей  чрезвычайная сложность моделей. Рассмотрим сеть, которая получает данные от изображения из базы данных MNIST (28×28 пикселов), передает их в два скрытых слоя по 30 нейронов, а затем в слой с мягким максимумом из 10 нейронов. Общее число ее параметров составляет около 25 тысяч. Это может привести к серьезным проблемам. Чтобы понять почему, рассмотрим еще один упрощенный пример (рис. 2.8).

Рис. 2.8. Две модели, которыми может быть описан наш набор данных: линейная и многочлен 12-й степени

У нас есть ряд точек на плоской поверхности, задача  найти кривую, которая наилучшим образом опишет этот набор данных (то есть позволит предсказывать координату y новой точки, зная ее координату x). Используя эти данные, мы обучаем две модели: линейную и многочлен 12-й степени. Какой кривой стоит доверять? Той, которая не попадает почти ни в один обучающий пример? Или сложной, которая проходит через все точки из набора? Кажется, можно доверять линейному варианту, ведь он кажется более естественным. Но на всякий случай добавим данных в наш набор! Результат показан на рис. 2.9.

Рис. 2.9. Оценка модели на основе новых данных показывает, что линейная модель работает гораздо лучше, чем многочлен 12-й степени

Вывод очевиден: линейная модель не только субъективно, но и количественно лучше (по показателю квадратичной ошибки). Но это ведет к очень интересному выводу по поводу усвоения информации и оценки моделей машинного обучения. Строя очень сложную модель, легко полностью подогнать ее к обучающему набору данных. Ведь мы даем ей достаточно степеней свободы для искажения, чтобы вписаться в имеющиеся значения. Но когда мы оцениваем такую модель на новых данных, она работает очень плохо, то есть слабо обобщает. Это явление называется переобучением. И это одна из главных сложностей, с которыми вынужден иметь дело инженер по машинному обучению. Нейросети имеют множество слоев с большим числом нейронов, и в области глубокого обучения эта проблема еще значительнее. Количество соединений в моделях составляет миллионы. В результате переобучение  обычное дело (что неудивительно).

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3