Хокинг Стивен - Большое, малое и человеческий разум стр 12.

Шрифт
Фон

Я еще раз хочу подчеркнуть, что в таких нелокальных эффектах события, происходящие в различных точках A и В, оказываются каким-то таинственным образом связанными друг с другом. Квантовая запутанность (entanglement) — штука довольно тонкая. События оказываются связанными таким образом, что характер связи исключает всякую возможность передачи сигнала из точки А в точку В (этот факт существенно важен для согласования квантовой механики с теорией относительности). В противном случае квантовую запутанность можно было бы просто использовать для передачи сигнала со скоростью большей, чем скорость света. Этот эффект является чисто квантовым, и в классической механике мы не можем даже представить себе его аналог (т. е. ситуацию, когда объекты одновременно следует считать и совершенно независимыми, и связанными друг с другом). Все это в самом деле весьма необычно.

Еще один пример Х-тайн связан c нуль-измерением, которое можно проиллюстрировать на примере так называемой задачи Элицура-Вайдмана об испытании бомб. Предлагаю читателю вообразить себя членом группы террористов, которая захватила склад с большим количеством бомб. Головная часть каждой из них снабжена сверхчувствительным детектором, к которому прикреплено зеркальце. Детонатор срабатывает при попадании на зеркальце даже одного-единственного кванта света. При этом известно, однако, что во многих бомбах детонаторы испорчены, т. е. рычажки-плунжеры, соединенные с зеркальцем, заржавели и уже не срабатывают при воздействии только одного фотона. К зеркальцу на головной части такой бомбы можно относиться как к обычному отражателю, а не как к подвижной детали детонатора. Поведение бомб при воздействии фотонов показано на рис. 2.6, а. Задача террористов заключается в том, чтобы найти среди набора одинаковых по виду бомб именно такую, у которой детонатор заведомо исправен. Классическая физика вообще не позволяет решить эту задачу, поскольку единственный способ определить исправность детонатора заключается в каком-либо воздействии на него (его можно, например, потрогать, осветить и покачать), после чего исправная бомба должна просто взорваться.

Рис. 2.6.

а — задача Элицура-Вайдмана о выборе исправных бомб. Сверхчувствительный детонатор исправной бомбы срабатывает при воздействии одиночного фотона видимого света, а в неисправной бомбе детонатор «заедает». Задача заключается в нахождении исправной бомбы среди большого числа неисправных; б — схема тестирования бомб. При испытании исправной бомбы зеркало внизу справа срабатывает как простое измерительное устройство. Если это измерение показывает, что фотон прошел по другой траектории, то детектор в точке В зарегистрирует фотон, что не может произойти при испытании неисправной бомбы.

Возможно, следующее утверждение покажется вам очень странным, но квантовая механика позволяет нам провести испытание того, что могло бы случиться, но не произошло (философы называют такую ситуацию противофактической). Сейчас я продемонстрирую, каким замечательным образом квантовая механика дает нам возможность получать реальные результаты из некоторых противофактических данных! На рис. 2.6, б приведена схема эксперимента, предложенного Элицуром и Вайдманом в 1993 г. для решения поставленной задачи. Предположим, что мы имеем дело с бомбой-болванкой, зеркальце которой из-за дефекта не реагирует при отражении фотона. Фотон от источника сначала проходит через полупрозрачное (иногда его называют полупосеребренным) зеркало, которое пропускает только половину попадающего на него света и отражает другую половину. Вы можете считать, что зеркало просто пропускает половину падающего на него светового потока и отражает другую половину. Однако на квантовом уровне с одиночными фотонами могут происходить очень странные вещи. Действительно, каждый отдельный фотон, испускаемый индивидуальным источником, можно представить в виде квантовой суперпозиции двух возможных траекторий фотона, описывающих пропускание и отражение. Зеркало на бомбе установлено под углом 45° к траектории пропускаемого пучка фотонов. Отраженная часть пучка еще раз отражается (на этот раз целиком) от другого, полностью посеребренного зеркала (также расположенного под углом 45°), после чего оба луча (или, точнее, обе половинки исходного пучка) соединяются при помощи еще одного полупосеребренного зеркала, как показано на рис. 2.6, б. Детекторы при этом располагаются в точках А и В.

Рассмотрим, что происходит с одиночным фотоном, испущенным источником, при попадании на головную часть неисправной бомбы. На первом полупосеребренном зеркале квантовое состояние фотона расщепляется на два отдельных состояния, одно из которых соответствует фотону, пропущенному через полупосеребренное зеркало к неисправной бомбе, а второе — фотону, отраженному по направлению к неподвижному зеркалу (такая суперпозиция возможных траекторий фотона в точности совпадает с суперпозицией, рассмотренной выше для эксперимента с прохождением фотона через две щели на рис. 2.2, а также, что имеет особое значение, наблюдается при сложении спинов). Предположим, что длины траекторий между двумя полупрозрачными зеркалами совершенно одинаковы. Для определения состояния фотона в момент достижения им регистрирующих устройств необходимо сравнить траектории обеих составляющих суперпозиции состояний. Легко заметить, что траектории «взаимопогашаются» в точке В, но одна из них продолжается дальше до точки А, вследствие чего в схеме должен иногда срабатывать только детектор А, в то время как детектор В не должен ничего регистрировать во всех случаях. Это весьма похоже на интерференционную картину, наблюдаемую в экспериментах рис. 2.2, когда интенсивность облучения некоторых участков постоянно равна нулю вследствие взаимного гашения квантовых состояний в этих точках. Таким образом, при тестировании (т. е. облучении) неисправной бомбы детектор А должен срабатывать постоянно, а детектор В — столь ж е постоянно не выдавать никаких сигналов.

Рассмотрим далее ситуацию с тестированием исправной бомбы. В этом случае зеркало на бомбе перестает быть простым отражателем, а его сдвиг превращает саму бомбу в некоторое измерительное устройство, которое регистрирует одно из двух возможных событий (наличие или отсутствие падающего фотона). Если фотон проходит через полупрозрачное зеркало и попадает на зеркало детонатора, то событие регистрируется и... бомба взрывается с оглушительным «Ба-бах!!!». Тем самым мы определяем исправную бомбу, но, к сожалению, тут же теряем ее, так что нам не остается ничего иного, как установить на стенд следующую бомбу. Однако существует возможность, что при проведенном измерении (напоминаю, что измерительным прибором фактически является сама бомба) взрыва не произойдет из-за того, что фотон не попадет на зеркальце, а пройдет по другой траектории (именно эту ситуацию и обозначает термин «нуль-измерение»). В этом случае фотон попадает на второе полупрозрачное зеркало, где может быть с одинаковой вероятностью отражен или пропущен. В последнем случае он достигает точки В, где и регистрируется детектором. Таким образом, при тестировании исправной бомбы каждый случай регистрации фотона детектором В можно рассматривать как следующее событие: «бомба сработала в качестве измерительного устройства и выделила одну из двух возможных траекторий фотона». Существенно важным при этом является то, что испытываемая исправная бомба сама является измерительным устройством, участвует в процессе «компенсации» длин траекторий и позволяет зарегистрировать фотон в детекторе В даже без непосредственного взаимодействия с этим фотоном (это и есть нуль-измерение!). Ведь если фотон не прошел по одной из двух возможных траекторий, то он прошел по другой! Когда детектор В регистрирует поступление фотона, мы понимаем, что бомба сработала в качестве измерительного прибора и является исправной. Более того, каждая регистрация фотона детектором В, не сопровождающаяся взрывом, означает, что тестируемая бомба однозначно является исправной. Наша уверенность связана с тем, что фотон действительно прошел по другой траектории.

Описанный эксперимент может показаться весьма странным, однако в 1994 г. во время визита в Оксфорд Зейлингер рассказал мне, что он и его коллеги действительно провели предложенный выше эксперимент по тестированию бомб (разумеется, бомбы не были боевыми, а наши коллеги-физики не террористы). Зейлингер и его друзья (Квят, Вайнфуртер и Касевич) обнаружили еще один, более эффективный вариант решения этой задачи, при котором тестирование осуществляется вообще без расхода бомб. Я не помню, за счет каких усложнений измерительной установки им удалось этого добиться, но в целом можно констатировать, что задача о тестировании бомб фактически уже решена — при очень небольшом числе взрывов (или даже вообще без взрывов) можно гарантированно выделить из некоторого множества бомб заведомо исправную.

Давайте пока остановимся на этих рассуждениях, так как приведенные примеры, как мне кажется, уже наглядно продемонстрировали совершенно необычный характер тех квантово-механических явлений, которые я выше назвал Z-тайнами. На мой взгляд, какие-то проблемы возникают вследствие того, что некоторые люди, размышляя о таких задачах, приходят в восторг («Ах, боже мой, как изумительна квантовая механика!»). Все это совершенно правильно, и квантовая механика — действительно замечательная вещь (хотя бы потому, что она включает в себя описанные Z-тайны в качестве реальных явлений), однако те же люди далее начинают считать, что сказанное относится и к Х-тайнам, а это, на мой взгляд, совершенно ошибочно!

Вернемся к знаменитой задаче о коте Шредингера. Схема мысленного эксперимента, представленная на рис. 2.7, не совсем совпадает с первоначальным замыслом самого Шредингера, но это несущественно для общего рассмотрения. Мы вновь имеем дело с источником фотонов и полупрозрачным зеркалом, которое переводит квантовое состояние падающего фотона в некоторую суперпозицию состояний (одно, как и прежде, соответствует проходящему фотону, а второе — отраженному). При срабатывании регистрирующего устройства, расположенного на траектории пропускаемого фотона, выстрел из пистолета убивает несчастного кота. Этого кота можно рассматривать в качестве конечного измерительного устройства, т. е. считать, что мы просто переходим от квантового уровня измерения к макроскопическому (а именно, к коту, который может быть живым или мертвым). Проблема заключается в том, что если вы считаете такой переход (от квантов к коту) законным, то должны также считать, что актуальное (реальное?) состояние кота тоже представляет собой некоторую суперпозицию двух состояний (жизни и смерти). Действительно, если фотон описывается суперпозицией двух состояний (двух траекторий), а детектор — суперпозицией двух состояний (включен/выключен), то было бы естественным (и последовательным) описывать кота суперпозицией двух состояний (жизнь/смерть). Проблема была сформулирована очень давно, но найти ее удовлетворительное решение пока не удалось. Число мнений и предлагаемых решений чуть ли не превосходит число физиков, связанных с квантовой механикой (такое превышение вполне возможно, поскольку многие физики меняли свои мнения в процессе обсуждения). Мне хочется привести весьма общее мнение, высказанное однажды в приятной дружеской беседе за ужином Бобом Уолдом: «Если вы действительно верите в квантовую механику, то вы не можете относиться к ней серьезно». Это замечание представляется мне очень глубоким и верным по отношению не только к самой квантовой механике, но и к ученым, связанным с нею. Я даже попытался как-то разделить физиков, работающих в этой области, на несколько групп, как это показано на рис. 2.8. Прежде всего в соответствии со сказанным выше я разделил их на верующих и серьезных. Разумеется, вы вправе спросить, что я подразумеваю под серьезностью? Мне кажется, что серьезные люди для описания реального мира используют вектор состояний | ψ >, поскольку этот вектор является реальным. С другой стороны, те специалисты, которые действительно «верят» в квантовую механику, не считают этот подход правильным. Я попытался классифицировать по этому признаку большое число известных физиков. Насколько мне удалось выяснить, Нильс Бор и многие другие представители так называемой копенгагенской школы могут быть отнесены к «верующим». Сам Нильс Бор верил в квантовую механику, но не относился к вектору | ψ > как к серьезному описанию мира. Для него этот вектор оставался чисто мысленной конструкцией, т. е. он считал, что этот вектор является способом описания мира, но не самим миром. Именно это обстоятельство заставило Джона Белла обозначить квантовую механику аббревиатурой FAPP (For All Practical Purposes, т. е. для всех практических целей). Самому Беллу это сокращение очень нравилось (мне кажется, потому что оно имеет слегка уничижительный или обидный характер). Этот подход связан с концепцией «декогеренции», о которой я очень кратко расскажу позднее.

Рис. 2.7. Кот Шредингера.

Квантовое состояние системы представляет собой линейную суперпозицию отраженного и пропущенного фотонов. Пропущенный фотон запускает некоторое устройство, убивающее кота, вследствие чего в соответствии с U-эволюцией состояние кота представляет собой суперпозицию жизни и смерти.

Рис. 2.8.

Вы можете заметить, что многие ревностные сторонники FAPP (например, Зурек) помещены в центре диаграммы рис. 2.8. Впрочем, возможно, мне еще надо объяснить, что я подразумеваю под центром диаграммы. Дело в том, что я разделил «серьезных» физиков на разные группы. Часть из них верит в U-эволюцию, т. е. воспринимает ее в качестве единого процесса (эту точку зрения можно назвать верой в картину множественности миров). В такой картине рассматриваемый кот действительно является одновременно живым и мертвым, однако следует учитывать, что два состояния кота при этом в некотором смысле относятся к двум разным мирам или вселенным (ниже я расскажу об этом подробнее). Именно поэтому я выделил физиков, придерживающихся (придерживавшихся когда-то раньше) этой точки зрения, в особую группу и поместил ее в центре диаграммы.

Физики, которые, по моему мнению, действительно серьезно относятся к вектору состояний | ψ > (я лично вхожу в их число), верят, что процессы U и R являются реальными. При этом не только осуществляется унитарная эволюция U (до тех пор, пока система остается в каком-то смысле малой), но и происходит то, что я обозначил через R-процесс (это не точно R, но нечто ему подобное). Если вы относите себя к группе верующих, то можете выбрать для себя, по-видимому, одну из следующих точек зрения. Прежде всего вы можете считать, что никакие новые физические эффекты учитывать не следует (к этой группе я отношу де Бройля и Бома, а также некоторых очень далеких от них по идеологии физиков — Гриффитса, Гелл-Манна, Хартля, Омнеса). При таком подходе операция R играет какую-то вспомогательную роль по отношению к стандартной U-эволюции квантовой механики, однако открытия новых эффектов ожидать не стоит. И наконец, существует группа физиков (к ней отношусь и я лично), придерживающихся второй «действительно серьезной» точки зрения, которые полагают, что в будущем произойдет нечто новое, способное изменить всю структуру квантовой механики. Подходы R и U действительно противоречат друг другу — им на смену должно прийти нечто новое. Имена физиков этой группы я собрал в правом нижнем углу диаграммы.

Мне хочется чуть подробнее остановиться на роли математики и некоторых других проблемах, связанных с котом Шредингера. Давайте еще раз рассмотрим ситуацию с котом и попробуем ввести нормировку (вес состояний) при помощи комплексных чисел w и z (рис. 2.9, а). Фотон расщепляется на два состояния, поэтому, если вы серьезно относитесь к квантовой механике и верите в реальность вектора состояний, вам следует также поверить в то, что кот действительно представляет собой некоторую суперпозицию состояний, в которых он одновременно и жив, и мертв. Эти состояния (жизнь/смерть) очень удобно записать через скобки Дирака, как показано на рис. 2.9. Отметьте для себя, что в скобки Дирака коты помещаются точно так же, как обычные символы! В рассматриваемом случае кот не представляет собой целостный объект, поскольку в его описание входят пистолет, фотон и окружение, причем каждый элемент описания представляет собой произведение всех эффектов одновременно (воздух и т. п.), что вы можете представлять в виде некоторой суперпозиции (рис. 2.9, б).

Рис. 2.9.

Каким образом все это можно согласовать в рамках концепции множественности миров? Почему, собственно, рассматривая кота, мы не видим его в виде суперпозиции этих самых состояний? Физики, придерживающиеся теории множественности миров, предлагают для этой ситуации картинку, показанную на рис. 2.9, в, на которой существуют состояния и с живым, и с мертвым котом (в каждом случае со своим наблюдателем). На рис. 2.9, в я и показал такую суперпозицию, поместив в скобки Дирака кота (в двух весьма разных состояниях) и наблюдателя (я попробовал придать его лицу выражение, подобающее квантовому состоянию кота). В рамках концепции множественности миров все сходится, и мы имеем просто копии наблюдателя, однако при этом следует помнить, что обитатели этих картинок живут в «разных мирах», т.е. если вы являетесь одной из этих копий, то другая копия (из параллельного мира) наблюдает за тем, как вы реализуете имеющиеся возможности. Разумеется, вы посчитаете такой метод описания Вселенной не очень удобным и экономичным, однако я думаю, что дела обстоят значительно хуже и трудности вовсе не ограничиваются сложностью или неудобством описания.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке